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Abstract

Subject of this work is the investigation of universal scaling laws which are observed in coupled
chaotic systems. Progress is made by replacing the chaotic fluctuations in the perturbation dynamics
by stochastic processes.

First, a continuous-time stochastic model for weakly coupled chaotic systems is introduced to
study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity of
chaos). By means of the the Fokker-Planck equation scaling relations are derived, which are con-
firmed by results of numerical simulations.

Next, the new effect of avoided crossing of Lyapunov exponents of weakly coupled disordered
chaotic systems is described, which is qualitatively similar to the energy level repulsion in quantum
systems. Using the scaling relations obtained for the coupling sensitivity of chaos, an asymptotic
expression for the distribution function of small spacings between Lyapunov exponents is derived
and compared with results of numerical simulations.

Finally, the synchronization transition in strongly coupled spatially extended chaotic systems is
shown to resemble a continuous phase transition, with the coupling strength and the synchronization
error as control and order parameter, respectively. Using results of numerical simulations and theo-
retical considerations in terms of a multiplicative noise partial differential equation, the universality
classes of the observed two types of transition are determined (Kardar-Parisi-Zhang equation with
saturating term, directed percolation).

Kurzfassung

Gegenstand dieser Arbeit ist die Untersuchung universeller Skalengesetze, die in gekoppelten chao-
tischen Systemen beobachtet werden. Ergebnisse werden erzielt durch das Ersetzen der chaotischen
Fluktuationen in der Störungsdynamik durch stochastische Prozesse.

Zunächst wird ein zeitkontinuierliches stochastisches Modell für schwach gekoppelte chaoti-
sche Systeme eingeführt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsstärke
(coupling sensitivity of chaos) zu untersuchen. Mit Hilfe der Fokker-Planck-Gleichung werden Ska-
lengesetze hergeleitet, die von Ergebnissen numerischer Simulationen bestätigt werden.

Anschließend wird der neuartige Effekt der vermiedenen Kreuzung von Lyapunov-Exponenten
schwach gekoppelter ungeordneter chaotischer Systeme beschrieben, der qualitativ der Abstoßung
zwischen Energieniveaus in Quantensystemen ähnelt. Unter Benutzung der für diecoupling sensiti-
vity of chaosgewonnenen Skalengesetze wird ein asymptotischer Ausdruck für die Verteilungsfunk-
tion kleiner Abstände zwischen Lyapunov-Exponenten hergeleitet und mit Ergebnissen numerischer
Simulationen verglichen.

Schließlich wird gezeigt, dass der Synchronisationsübergang in stark gekoppelten räumlich aus-
gedehnten chaotischen Systemen einem kontinuierlichen Phasenübergang entspricht, mit der Kopp-
lungsstärke und dem Synchronisationsfehler als Kontroll- beziehungsweise Ordnungsparameter. Un-
ter Benutzung von Ergebnissen numerischer Simulationen sowie theoretischen Überlegungen an-
hand einer partiellen Differentialgleichung mit multiplikativem Rauschen werden die Universali-
tätsklassen der zwei beobachteten Übergangsarten bestimmt (Kardar-Parisi-Zhang-Gleichung mit
Sättigungsterm, gerichtete Perkolation).
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The first questions are always to be asked, and the wisest
doctor is gravelled by the inquisitiveness of a child.

RALPH WALDO EMERSON, Intellect, inEssays(1841).

1 Introduction

Natural systems that vary with time are mathematically described by dynamical systems,
which can be deterministic or stochastic. While linear deterministic dynamical systems are
well understood, their stochastic and nonlinear deterministic counterparts still provide many
challenges. One facet of nonlinear deterministic dynamical systems that has attracted much
interest since POINCARÉ’s pioneering work in the 1890s is the possibility of chaotic so-
lutions [84]. Chaos in this sense is characterized by a sensitive dependence of the system
dynamics on the initial conditions. Many aspects of a dynamical system, including its stabil-
ity with respect to small perturbations, are characterized by the Lyapunov exponents. These
indicators that measure the exponential growth or decay of linearized perturbations play an
important role throughout this work. In the last five decades much progress in the investi-
gation of chaotic systems has been made with the aid of computer simulations. During the
last ten years the focus of interest has shifted from low- to high-dimensional dynamical sys-
tems, in particular to spatially extended systems that abound in nature and display a variety
of interesting phenomena, ranging from pattern formation to turbulence [17].

A very active field of research is the synchronization of coupled chaotic systems. The
effect of synchronization of periodic oscillators has already been studied by HUYGENS in
the seventeenth century [94]. Synchronization of chaotic systems, however, refers to cou-
pled subsystems that are chaotic by themselves, but show a certain degree of correlation
between each other, e.g., have identical amplitudes at a given time. This counterintuitive ef-
fect has only been discovered in the 1980s by FUJISAKA and YAMADA [33, 110] as well as
PIKOVSKY [88], but is now reasonably well understood for low-dimensional systems [94].
The situation is again different for high-dimensional systems, as there are many open ques-
tions. One of them is the synchronization transition which is studied in this work.

For some phenomena in chaotic dynamics, universal scaling relations exist that are valid
for a wide range of different specific systems. A prominent example is the sequence of pe-
riod doubling bifurcations characterized by the universal Feigenbaum constant [84]. Two
further examples, that are studied in this work, are the scaling of the Lyapunov exponents
of weakly coupled chaotic systems and the scaling of the synchronization error of strongly
coupled spatially extended chaotic systems. For these phenomena the role of chaos is to pro-
vide temporal or spatiotemporal fluctuations in the linearized dynamics. It has been found

1



1 Introduction

that in several cases it is possible to model the chaotic fluctuations by random variables,
which explains the universality of the observed phenomena and often allows an analytic
treatment [25]. This approach is to some extent comparable with the methods of statistical
mechanics. At the moment, however, there exists no general formalism for the stochastic
modelling of chaotic fluctuations.

In this work we apply the method of stochastic modelling to coupled chaotic systems.
The remaining chapters are organized as follows.

In chapter 2 a brief review of dynamical systems and chaos is given. The main focus is
on concepts that are used in this work, i.e., Lyapunov exponents, spatially extended systems,
and synchronization. Furthermore, the idea of stochastic modelling of chaotic fluctuations
is reviewed and references to the literature of stochastic dynamics are given.

In chapter 3 we study the strong dependence of the Lyapunov exponents of weakly
coupled chaotic systems on the coupling strength. DAIDO coined the notion “coupling sen-
sitivity of chaos” for this behaviour which he first observed in 1984 [26]. Although some
theoretical explanations of this effect have been given since, we gain further insight by using
a very simple stochastic model that includes the key ingredients of the dynamics: fluctua-
tions and coupling. We then compare the theoretical predictions of our model with results
of numerical simulations.

Chapter 4 is concerned with a consequence of the coupling sensitivity of chaos that we
call “avoided crossing of Lyapunov exponents”. This effect, which to our knowledge has
not been reported before, appears as a strong repulsion between the Lyapunov exponents of
weakly coupled disordered chaotic systems. This behaviour is qualitatively reminiscent of
the energy level repulsion in nonintegrable quantum systems and can be related to random
matrix theory [77]. Using the results of chapter 3, we derive an approximate distribution
function for the spacings between the Lyapunov exponents and compare it with results of
numerical simulations.

In chapter 5 we turn our attention to spatially extended dynamical systems and study
their synchronization properties. Results of numerical simulations indicate the existence of
two different types of the synchronization transition. In both cases we find a continuous
phase transition between the synchronized and the nonsynchronized state. By means of
stochastic models [91, 48], the universality classes of these transitions are determined via
the estimation of some of the critical exponents.

Chapter 6 gives a summary of our main results and shows directions for further research.
In addition, each of the chapters 3, 4, and 5 closes with a brief summary. The possible exper-
imental relevance of our theoretical results is discussed in some detail in these summaries.

Finally, the two appendices A.1 and A.2 review some basic methods for the numerical
calculation of Lyapunov exponents and for the treatment of stochastic differential equations.
On page 87 an overview of the notation used in this work can be found.
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2 Nonlinear Dynamics and Stochastic Models

This chapter first gives a brief review of some of the main concepts of nonlinear dynamics.
In view of the following results, particular attention is paid to the Lyapunov exponents as
a measure of the stability of dynamical systems. For more details and proofs the reader
is referred to Refs. [52, 84]. More specialized sections treat spatially extended dynamical
systems, synchronization phenomena, and stochastic models of chaotic systems.

2.1 Dynamical Systems

2.1.1 Differential Equations and Maps

A dynamical system describes the temporal evolution of the state of a system, which is
characterized by a number of variables. Typical examples are angles and velocities for me-
chanical systems or voltages and currents for electrical ones. Thed variables form a state
vectoru ∈M ⊂Cd that describes the system. Each possible state of the system corresponds
to a point in thed-dimensional phase space, the temporal evolution of a state is described
by a trajectoryu(t) in this phase space. In a deterministic dynamical system the state of the
system unequivocally determines its future evolution. This means that trajectories cannot
cross each other. The temporal evolution is typically either described by a set of ordinary
differential equations (ODEs) or by a discrete map acting on the state vector. There are,
however, other forms of description, e.g., delay differential equations or partial differential
equations.

In the case of ordinary differential equations we first note that it is sufficient to consider
sets of first order ODEs,

du(t)
dt

= f (u(t)) , (2.1)

wheret ∈R is the continuous time andf : M →Cd is a function that is in general nonlinear.
Equations including higher order derivatives or explicit time dependences can be trans-
formed into this form by adding further state variables. Given an initial conditionu(0), the
temporal evolution ofu(t) for t > 0 can in principle be calculated unequivocally, provided
thatf locally satisfies a Lipschitz condition [52].

If we look at the system at discrete time instants, we can describe the temporal evolution
by a map,

u(t +1) = f (u(t)) , (2.2)
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2 Nonlinear Dynamics and Stochastic Models

wheret ∈ Z is the discrete time andf : M → M is a again a function that is in general
nonlinear. Given an initial conditionu(0), it is clear that the temporal evolution ofu(t) for
t > 0 is determined unequivocally. A discrete map can be attributed to a continuous-time
dynamical system via the Poincaré surface of section (see, e.g., Ref. [84]).

2.1.2 Lyapunov Exponents

The asymptotic stability of a trajectory can be studied by linearizing the evolution equations.
A trajectoryu(t) is called asymptotically stable if there exists a phase space volume around
it such that trajectoriesu′(t) in this volume approachu(t) in the long time limit,

lim
t→∞

∥∥u(t)−u′(t)
∥∥= 0.

We first limit our attention to differential equations of the form (2.1). We consider a
reference trajectoryu(t) and a second trajectoryu(t) + w(t), wherew(t) is a small pertur-
bation. By means of the Taylor expansion

f (u+w) = f (u)+J(u)w+O(‖w‖2)

(whereJ is the Jacobian off ) we can study the time evolution of the perturbation vector in
linear approximation,1

dw(t)
dt

= J(u(t))w(t) .

Note that the JacobianJ(u(t)) is in general time-dependent. If the reference trajectory con-
sists of a fixed point,u(t) = u0, its stability depends on the real parts of the eigenvaluesγi

(i = 1, . . . ,d) of the constant JacobianJ(u0):

max
i
{Reγi}


< 0 : asymptotically stable,

= 0 : marginally stable,

> 0 : unstable.

In the case of marginal stability one has to consider higher order terms in the Taylor expan-
sion off (u+w) to decide about the stability of the fixed point.

In the case of discrete maps of the form (2.2), we can also use the Taylor expansion of
f (u+w) and obtain in linear approximation

w(t +1) = J(u(t))w(t) .

If the reference trajectory consists of a fixed pointu0, the stability again depends on the
eigenvaluesγi (i = 1, . . . ,d) of the constant JacobianJ(u0). Here, however, the logarithms

1We write an equal sign here and understandw(t) as a “linear perturbation”.
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2.1 Dynamical Systems

of the absolute eigenvalues are of interest:

max
i
{ln |γi |}


< 0 : asymptotically stable,

= 0 : marginally stable,

> 0 : unstable.

If the reference trajectory is not a fixed point, its stability is measured by the Lya-
punov exponents. We first concentrate on discrete maps of the form (2.2). Given the initial
conditionsu0 = u(0) andw0 = w(0) (with ‖w0‖ = 1), we define the local (or finite-time)
Lyapunov exponents as

λ(t,u0) =
1
t

ln‖w(t)‖=
1
t

ln‖P(t,u0)w0‖=
1
2t

ln(wT
0 PT(t,u0)P(t,u0)w0) ,

where the upper indexT denotes the transpose and

P(t,u0) =
t−1

∏
τ=0

J(u(τ)) .

The real nonnegative symmetric matrixPTP has real nonnegative eigenvaluesγi(t,u0) (i =
1, . . . ,d) and eigenvectors which are orthogonal to each other. Choosingw0 in the direction
of the eigenvector corresponding to the eigenvalueγi(t,u0), we have

λi(t,u0) =
1
2t

ln(wT
0 γi(t,u0)w0) =

1
2t

lnγi(t,u0) .

In the long-time limit we obtain the Lyapunov exponents

λi = lim
t→∞

λi(t,u0)

which are according to Oseledec’s multiplicative ergodic theorem independent ofu0 for
almost allu0 (see, e.g., Ref. [52]). Due to ergodicity, we also obtain the Lyapunov exponents
by means of averaging their finite-time values with respect to the invariant measure ofu,

λi = 〈λi(t,u0)〉 . (2.3)

We sort the Lyapunov exponents with decreasing magnitude,λ1≥ λ2≥ ·· · ≥ λd. A generic
perturbationw0 will have components in the directions of all eigenvectors and thus rapidly
align in the direction of fastest growth. A numerical method for the calculation of Lyapunov
exponents is given in App. A.1.

In the case of differential equations of the form (2.1) Lyapunov exponents are defined
in nearly the same way. The only difference is thatP(t,u0) has to be replaced byO(t,u0),
which is the matrix solution of the differential equation

dO(t,u0)
dt

= J(u(t))O(t,u0)
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2 Nonlinear Dynamics and Stochastic Models

with the initial conditionO(0,u0) = I (where I is the unit matrix). For trajectories of
continuous-time systems one Lyapunov exponent is always zero (except for trajectories that
consist of single fixed points); this accounts for the phase space motion along the trajectory.

The concept of Lyapunov exponents is one of the most important tools to character-
ize dynamical systems. Although the Lyapunov exponents themselves have no physical
meaning, many physically relevant quantities, such as the correlation time and the entropy,
depend on them (see, e.g., Ref. [25]). Furthermore, the Lyapunov exponents are used to
classify dynamical systems with respect to their stability properties in the following way.
After a transient time a system typically settles on an attractor. Without going into math-
ematical details, an attractor can be seen as a set of phase space points that is approached
by all trajectories starting from a surrounding phase space volume (the basin of attraction).
The Lyapunov exponents are average quantities that describe the stretching and shrinking
of phase space volumes in different directions. For dissipative systems the sum of Lyapunov
exponents is negative, while it is zero for conservative systems. The Lyapunov exponents
provide a criterion to decide about the nature of an attractor. As chaos is characterized by
a sensitive dependence of the system behaviour on initial conditions, it can be associated
with a positive largest Lyapunov exponentλ1. For continuous-time systems we have the
following classification:

λ1 < 0 : attractive fixed point,

λ1 = 0, λ2 < 0 : attractive limit cycle,

λ1 = λ2 = 0 : quasiperiodic attractor,

λ1 > 0 : chaotic attractor.

Finally we remark that the Lyapunov exponents play a crucial role in the context of syn-
chronization, see Sec. 2.3 below.

The estimation of Lyapunov exponents from time series of experimental systems is very
difficult, although some methods exist for the estimation of at least the largest Lyapunov
exponent [65]. Therefore, the Lyapunov exponents are most useful for systems which math-
ematical models are known for.

2.1.3 Example: Skew Bernoulli and Skew Tent Maps

Simple examples which allow analytical calculations of Lyapunov exponents are given by
the one-dimensional skew Bernoulli map (see Fig. 2.1(a))

f : [0,1]→ [0,1] , u 7→
{

u/a if u≤ a,
(u−a)/(1−a) if u> a,

(2.4)

and the skew tent map (see Fig. 2.1(b))

f : [0,1]→ [0,1] , u 7→
{

u/a if u≤ a,
(1−u)/(1−a) if u> a.

(2.5)
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2.2 Spatially Extended Dynamical Systems

1

1a0

f(u)

u

(a)
1

1a0 u

f(u)(b)

Figure 2.1: The skew Bernoulli (a) and skew tent (b) maps.

Both maps depend on a parametera∈ (0,1). Due to the uniform invariant measures of the
maps, the absolute derivatives are for both maps given by

∣∣ f ′(u)
∣∣=
{

1/a with probabilitya,
1/(1−a) with probability 1−a.

The Lyapunov exponent has the same value for both maps and is easily calculated by
averaging the one step (finite-time) Lyapunov exponent according to Eq. (2.3),

λ = 〈λ(1,u0)〉 =
〈
ln
∣∣ f ′(u0)

∣∣〉 =−alna− (1−a) ln(1−a) .

The Lyapunov exponent is positive for all values ofa∈ (0,1) and has a maximum ata =
1/2. The variance of the one step Lyapunov exponent can also be calculated,

2σ
2 =

〈
[λ(1,u0)−λ ]2

〉
= a(1−a)

(
ln

a
1−a

)2

.

The variance is zero only fora = 1/2 and has maxima ata≈ 1/2±0.417.

2.2 Spatially Extended Dynamical Systems

Extended dynamical systems depend on both space and time. Typically they show local
dynamics and spatial coupling, often in the form of diffusion. Examples can be found in the
forms of fluids, semiconductors, broad-area lasers, chemical reactors, etc. There are several
approaches to describe turbulence by means of spatially extended dynamical systems [17].

Of the rich variety of phenomena that are observed in such systems, we mention space-
time intermittency, moving fronts, and self-organized spatial structures. By space-time
chaos a dynamical regime is denoted which is characterized by both chaotic time series
at each spatial site and irregular spatial profiles at a given time.
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2 Nonlinear Dynamics and Stochastic Models

The mathematical models that are closest to most physical extended systems are partial
differential equations (PDEs). Widely studied examples are reaction diffusion systems of
the form [17]

∂u(x, t)
∂t

= f (u(x, t))+ ε∆u(x, t) , (2.6)

where the components of the state vectoru∈Rd are the concentrations of chemical species,
x ∈ [0,L] denotes space (with the system lengthL ∈ R+), and t ∈ R denotes time. The
nonlinear functionf (u) describes the local chemical reaction, and the term∆u (where the
Laplacian acts componentwise) accounts for diffusion of molecules or atoms. Prominent
other PDEs are the complex Ginzburg-Landau equation for a complex state variableu(x, t)∈
C and the Kuramoto-Sivashinsky equation for a real scalar state variableu(x, t) ∈ R, which
includes nonlinear and higher order spatial coupling [17].

Especially for numerical simulations other levels of description than PDEs can be more
appropriate. The first simplification of a PDE consists of the discretization of space, leading
to coupled oscillators. By discretizing time as well, one arrives at so-called coupled map
lattices (CMLs) [64]. In one spatial dimension a CML has the form

u(x, t +1) = f (u(x, t))+ ε[f (u(x+1, t))−2f (u(x, t))+ f (u(x−1, t))] , (2.7)

wherex∈ {0, . . . ,L−1} denotes space (with the system lengthL ∈ N), t ∈ Z denotes time,
u(x, t)∈M ⊂Cd is the state vector at the spatial sitex, andf : M→M is a nonlinear function
describing the local dynamics. Often the local state vector is a real scalaru(x, t) ∈M ⊂ R.
Note that we first apply the mapf to u and then the coupling tof (u). This ensures that
the state variables stay in the intervalM . The coupling is a discrete diffusion operator.
Generalizations to higher spatial dimensions are straightforward; in this work, however, we

0 500 1000

x

0

0.5

1

u(
x,

t)

Figure 2.2: Snapshot of the state variableu(x, t) of a tent map CML at a fixed time (L = 1024).
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2.2 Spatially Extended Dynamical Systems

limit ourselves to one spatial dimension. In Fig. 2.2 a snapshot of the state variableu(x, t)
of a CML consisting ofL = 1024 tent maps (i.e., skew tent maps (2.5) witha = 1/2)

f : [0,1]→ [0,1] , u 7→ 1−2|u−1/2|

is shown as an example; to ensure translational invariance, periodic boundary conditions
u(x+ L, t) = u(x, t) have been used. Most phenomena that are found in spatially extended
dynamical systems can also be found in CMLs. There are other forms of coupling than the
diffusive one used in Eq. (2.7). In Ch. 4, for instance, global coupling will be used.

Lyapunov exponents of spatially extended systems are calculated as described for low-
dimensional systems from the linearizations of Eqs. (2.6) and (2.7), respectively. The growth
rates of perturbationsw = (w(1), . . . ,w(d))T are calculated with respect to theq-norm

‖w‖q(t) =

[
1
L

∫ L

0

d

∑
j=1

|w( j)(x, t)|q dx

]1/q

,

where the integral is replaced by a sum for spatially discrete systems. In spatially extended
dynamical systems there are two limits that have to be taken to calculate the Lyapunov ex-
ponent: the usual limitt → ∞ and the thermodynamic limitL→ ∞. The combination of
both limits, however, induces a problem: it is not a priori clear that the perturbation vec-
tor w remains normalizable. It turns out that the perturbation vector is highly localized at
small spatial regions [42, 24, 91], and that finite-size and finite-time scaling relations for
the Lyapunov exponent can be derived [93]. Moreover, the Lyapunov exponents of spatially
extended systems have been found to be norm-independent, but to exhibit self-averaging
with the system sizeL only if the 0-norm is used [93] (see also App. A.1). In the ther-
modynamic limitL→ ∞ the normalized spectrum of Lyapunov exponentsλi(i/L) (with
λ1 ≥ λ2 ≥ . . . ≥ λL) approaches a characteristic density [74]. Furthermore, the dimension
and the Kolmogorov-Sinai entropy of spatially extended systems are proportional to the
system sizeL [17].

In all of the above considerations we implicitly assumed a spatially homogeneous per-
turbation vector and studied the temporal evolution of its spatial average. We can, however,
also start with a localized perturbation and follow its evolution in space and time. The sta-
bility of such perturbations can be characterized by velocity-dependent [30] or local [90]
Lyapunov exponents.

Another peculiarity of certain spatially extended systems is known as stable chaos [95].
This notion refers to the instability with respect to finite perturbations of systems with a
negative largest Lyapunov exponent. Systems exhibiting such behaviour are characterized
by a very strong nonlinearity in the local dynamics, e.g., a discontinuity of the local map.
An indicator for the stability of such systems is given by the velocityvF of nonlinear in-
formation propagation that is calculated as follows. Two replicasu1(x, t) andu2(x, t) of the
system are initially prepared to be in identical states everywhere except for a small spatial

9



2 Nonlinear Dynamics and Stochastic Models

region, where they have a finite difference. The systems are then let evolve independently,
andvF is calculated as the average propagation velocity of the front of the perturbation.
Systems exhibiting stable chaos are characterized by a positive velocityvF > 0 and a nega-
tive largest Lyapunov exponentλ < 0, whereas stable systems havevF = 0 andλ < 0. The
mechanism responsible for stable chaos is still under investigation [45]. In continuous-time
systems stable chaos has been found in a chain of periodically kicked oscillators [19]. So
far, stable chaos has not been observed in PDEs [46] and may therefore be regarded as an
effect which is not typical for physical systems.

2.3 Synchronization Phenomena

2.3.1 Coupled Dynamical Systems

The phenomenon of synchronization of coupled periodic oscillators is known for a long
time. Only recently, however, it has been found that also coupled chaotic systems are able to
synchronize [33, 110, 88, 87]. The basic mechanism can be described as follows. Consider
two coupled nonlinear maps,

u1(t +1) = f (u1(t))+ ε1[ f (u2(t))− f (u1(t))] ,
u2(t +1) = f (u2(t))+ ε2[ f (u1(t))− f (u2(t))] ,

(2.8)

whereε1,2 are the coupling parameters which may be different. The scheme is sketched in
Fig. 2.3. Two frequently studied special cases are bidirectional (ε1 = ε2 = ε) and unidirec-
tional (ε1 = 0, ε2 = ε) coupling. The systems are synchronized if the differencew = u1−u2

vanishes.

The asymptotic stability of the synchronized state can be studied by considering a small
perturbationw(t) of the synchronized state. The dynamical evolution ofw(t) is in first order
given by (see Sec. 2.1.2)

w(t +1) = (1− ε1− ε2) f ′(u1(t))w(t) ,

System 1 System 2

ε1

ε2

Figure 2.3: Sketch of the synchronization scheme.

10



2.3 Synchronization Phenomena

where f ′ is the derivative off . For the absolute value|w| we obtain

|w(t)|= (1− ε1− ε2)t |w(0)|
t−1

∏
τ=0

∣∣ f ′(u1(τ))
∣∣

= |w(0)|exp

{[
ln(1− ε1− ε2)+

1
t

t−1

∑
τ=0

ln
∣∣ f ′(u1)

∣∣] t

}
.

The synchronized state is asymptotically stable if the transverse (or conditional) Lyapunov
exponent

λ⊥ =
〈
ln
∣∣ f ′(u1)

∣∣〉 + ln(1− ε1− ε2)

is negative (due to ergodicity the average is over the phase space according to the natural
measure ofu1). For small perturbations of the synchronized state we haveu1 ≈ u2, such
that the coupling has negligible influence on the evolution (and thus the natural measure) of
u1. This enables us to replace the average of ln| f ′(u1)| by the Lyapunov exponentΛ of the
uncoupled map and to obtain fromλ⊥ < 0 the synchronization condition [88]

ε1 + ε2 > 1−e−Λ . (2.9)

In the case of bidirectional coupling (ε1 = ε2 = ε) we thus have the critical coupling param-
eter

εc =
1
2

(
1−e−Λ

)
.

These relations also hold for higher-dimensional maps.
For coupled systems of ODEs (with the coupling matrixC equal to the unit matrixI)

du1(t)
dt

= f (u1(t))+ ε1C[u2(t)−u1(t)] ,

du2(t)
dt

= f (u2(t))+ ε2C[u1(t)−u2(t)] ,
(2.10)

similar considerations lead to the synchronization condition [33, 88]

ε1 + ε2 > Λ . (2.11)

If the coupling matrixC is not the unit matrix (e.g., if the systems of ODEs are coupled
only in one vector component), the synchronization condition (2.11) does not hold. Instead,
one has to calculate the transverse Lyapunov exponentλ⊥ from the linearized equations for
a perturbationw of the synchronized state and check for whichε it is negative.

The synchronization conditions (2.9) and (2.11) can be used in experiments to measure
the largest Lyapunov exponentΛ , which is very difficult to estimate from time series. There
are other mechanisms besides diffusive coupling that lead to the synchronization of chaotic

11



2 Nonlinear Dynamics and Stochastic Models

systems; a general framework is given by the active-passive decomposition [68]. Further-
more, there are other forms of synchronization like phase synchronization and generalized
synchronization [106, 94]. If the coupled systems are not identical (as it is inevitably the case
in experiments), the existence of unstable periodic orbits close to the attractor can lead to
temporary desynchronization events even if the conditions (2.9) or (2.11) are fulfilled [89].
The synchronization of spatially extended systems is treated in detail in Ch. 5.

2.3.2 Example: Coupled Skew Tent Maps and Lorenz Equations

As examples for the synchronization of chaotic systems we now consider skew tent
maps (2.5) with parametera = 1/3 and the Lorenz differential equations (see, e.g.,
Ref. [52])

d
dt

x
y
z

=

 σ(y−x)
ρx−y−xz
−βz+xy

 (2.12)

with parametersσ = 10,ρ = 28, andβ = 8/3. The maps are coupled according to Eq. (2.8),
the Lorenz equations are coupled according to Eq. (2.10) withui = (xi ,yi ,zi)T and the cou-

0 0.1 0.2 0.3
ε

−0.2

0

0.2

0.4

0.6

λ

0

0.2

0.4

<
|w

|>
t

0 1 2 3 4 5
ε

−0.5

0

0.5

1

λ

0

0.1

<
||w

|| 1>
t

(b)(a)

Figure 2.4: The synchronization transition of coupled (a) skew tent maps and (b) Lorenz equations.
In the upper panels the average synchronization error〈‖w‖1〉t (time-averaged after some transient
phase) is shown. In the lower panels the Lyapunov exponentsλi (solid lines,i = 1,2 for the maps
and i = 1,2,3,4 for the ODEs) as well as the transverse Lyapunov exponentλ⊥ (dashed lines) are
shown.
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2.3 Synchronization Phenomena

pling matrix

C =

1 0 0
0 0 0
0 0 0

 ,

corresponding to coupling via thex-component. In both cases we apply bidirectional cou-
pling, ε1 = ε2 = ε.

In Fig. 2.4 the coupling dependences of the average synchronization error〈‖w‖1〉t =
〈‖u1−u2‖1〉t , the Lyapunov exponentsλi , and the transverse Lyapunov exponentλ⊥ are
shown (for the Lorenz equations only the four largest Lyapunov exponents are of inter-
est here). The first observation is that bothλ⊥ andλ2 become zero at the critical coupling
parameterεc. For the coupled maps,εc≈ 0.235 in agreement with the synchronization con-
dition (2.9). The second observation is that the largest Lyapunov exponentλ1 has the same
value forε > εc as without coupling. This happens because the coupling term vanishes in
the case of synchronization (u1 = u2). We further observe that the largest Lyapunov expo-
nentλ1 of the coupled Lorenz equations increases for small values ofε (for the coupled
tent maps this happens only for very small values ofε that are not resolved in Fig. 2.4(a)).
This effect is known as coupling sensitivity of chaos and is studied in Ch. 3. Finally we note
that the fourth Lyapunov exponentλ4 of the coupled Lorenz equations becomes negative
for someε < εc. This corresponds to phase synchronization (see Refs. [106, 94] for details).
In Fig. 2.5 the temporal evolution of the variablesx1 andx2 of the Lorenz systems with and

550 600 650

t

−10

0

10

x 2

−10

0

10

x 1

uncoupled coupled

Figure 2.5: Synchronization of two identical Lorenz systems; shown are the first componentsx1,2.
When the coupling (ε = 5) is switched on att = 600, both systems synchronize after a short transient.
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2 Nonlinear Dynamics and Stochastic Models

without coupling is shown. Both Figs. 2.4 and 2.5 show that the synchronization transition
is a transition between two different chaotic states, as opposed to the transition from regular
to chaotic motion.

2.4 Stochastic Modelling of Chaotic Fluctuations

The phenomena described in the following chapters of this work are found for many differ-
ent chaotic maps or differential equations. Rather than studying special systems, it seems
thus natural to look for common characteristics. All systems considered in this work share
the properties of fluctuations due to their chaotic nature and coupling between subsystems.
In recent years it turned out that for several problems it is possible to model the chaotic
fluctuations by random variables [88, 13, 85, 111, 34] (for an introduction see Ref. [25]).
The phenomena studied in this work are found in the perturbation dynamics of coupled sys-
tems (Lyapunov exponents, synchronization error) rather than in the dynamics of their state
variables. We therefore aim at stochastic models of the perturbation dynamics of coupled
chaotic systems. Lyapunov exponents are widely used in the context of random dynamical
systems [25, 7].

In this section we give a first overview and show relations to other work on stochas-
tic dynamics. The particular models used to study the phenomena of coupling sensitivity of
chaos and the synchronization transition in extended systems are introduced in Chs. 3 and 5,
respectively. To be able to make use of the Fokker-Planck equation, we choose continuous-
time models with Gaussian white noise. This choice is motivated by the observation that
the effects we study are found for discrete-time as well as continuous-time systems and
do not seem to depend on the distribution of fluctuations of particular systems. For low-
dimensional systems very simple stochastic models can already be sufficient. In Ch. 3 a
system of two stochastic differential equations is used to model the dynamics of the pertur-
bation vectors of two weakly coupled chaotic systems. In high-dimensional systems spatial
diffusion often plays an important role. In Ch. 5 a stochastic partial differential equation
provides an adequate model for the synchronization transition of coupled spatially extended
systems.

Problems are encountered for systems with long temporal correlations, in which white
noise is not able to replace the fluctuations. Some examples are presented in the following
chapters. Most chaotic systems, however, show a rapid decay of temporal correlations.

2.4.1 Zero-Dimensional Systems

Stochastic differential equations (zero spatial dimension) have been studied extensively,
mostly in the contexts of fluctuating control parameters as well as internal and external
noise [58, 103]. Unexpected effects like noise-induced transitions and ordering by noise
have been reported. In this work, we want to model the long time behaviour of perturbations
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2.4 Stochastic Modelling of Chaotic Fluctuations

(with the Lyapunov exponentλ ),

w(t)→ w(0)eλ t for t→ ∞ ,

but also allow for finite-time fluctuations. Our first ansatz is the simple linear Stratonovich
stochastic differential equation (see App. A.2 and Ref. [103])

dw(t)
dt

= [λ + ξ(t)]w(t) , (2.13)

whereξ(t) is a Gaussian stochastic process with

〈ξ(t)〉 = 0,
〈

ξ(t)ξ(t ′)
〉

= 2σ
2
δ(t− t ′)

(the averages are over different realizations of the noise process). We notice thatw(t) stays
positive ifw(0)> 0. The solution is simply given by

w(t) = w(0)exp

(
λ t +

∫ t

0
ξ(t̃) dt̃

)
= w(0)exp

(
λ t +
√

2σ
2W(t)

)
, (2.14)

whereW(t) is a Wiener process (see App. A.2). SinceW(t)/t→ 0 for t→∞ with probability
one, we have

w(t)→ w(0)eλ t for t→ ∞

with probability one. We find a transition between exponential growth and decay atλ = 0.
From Eq. (2.14) we obtain the finite-time Lyapunov exponent

λ(t) = λ +

√
2σ

2

t
W(t) .

Its average and variance are given by (with
〈
[W(t)]2

〉
= t, see App. A.2)

〈λ(t)〉 = λ ,
〈
[λ(t)−λ ]2

〉
=

2σ
2

t
.

The simple ansatz (2.13) is sufficient to understand the origin of the coupling sensitivity of
chaos, see Ch. 3.

For the moments〈wq〉 we have

d
dt
〈wq(t)〉 = qλ 〈wq(t)〉 +q〈ξ(t)wq(t)〉

= (qλ +q2
σ

2)〈wq(t)〉 ,

where we have used the Furutsu-Novikov relation [35, 83] for the second average (see also
App. A.2). The solution of the last equation is given by

〈wq(t)〉 = 〈wq(0)〉e(qλ+q2
σ

2)t .
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2 Nonlinear Dynamics and Stochastic Models

We thus find a transition atλ = −qσ
2, which seems to be in contradiction to our previous

result indicating a transition atλ = 0.
A closer look reveals that the moments are dominated by rare, but large finite-time

fluctuations, which is not the case if we add a nonlinear damping term to Eq. (2.13),

dw(t)
dt

= {λ + ξ(t)− [w(t)]ν}w(t) , w(0)> 0, (2.15)

whereν is positive. Againw(t) stays positive ifw(0) > 0. For this equation all moments
show the same transition atλ = 0 [104, 47]. From the stationary solution of the Fokker-
Planck equation or by means of embedding methods it can be shown that fort → ∞ we
have [104, 47]

〈wq〉 = (νσ
2)q/ν

Γ

(
λ

νσ
2 + q

ν

)
Γ

(
λ

νσ
2

) . (2.16)

For a quadratic nonlinearity (ν = 1) the expression for the first moment reduces to〈w〉 = λ .
The connection with the synchronization of coupled low-dimensional chaotic systems is

as follows. If we interpretλ = λ⊥ as the transverse Lyapunov exponent andw = ‖u1−u2‖
as the absolute synchronization error, the damping ensures that the latter stays limited if
λ⊥ > 0. The result (2.16) describes the dependence of the average absolute synchronization
error on the transverse Lyapunov exponent, which foru1≈ u2 is approximately proportional
to the differenceεc− ε between the coupling parameter and its critical value (see Sec. 2.3).

2.4.2 Spatially Extended Systems

In this work we limit ourselves to one spatial dimension. Generalizations of the concepts
to higher dimensions are straightforward. Here we only give a brief introduction to the
stochastic modelling of the perturbation dynamics of spatially extended systems; details
can be found in Refs. [91, 93] and Ch. 5. We start by adding a diffusion term to the linear
multiplicative noise equation (2.13) of the previous section,

∂w(x, t)
∂t

= [c+ ξ(x, t)]w(x, t)+ ε∆w(x, t) , (2.17)

wherec is a constant that will turn our to be related to the Lyapunov exponentλ , andε is the
diffusion constant. The sign ofw(x, t) may vary in space. Note, however, thatw(x, t) stays
positive if the initial statew(x,0) is positive at allx. The Gaussian stochastic processξ(x, t)
has the properties

〈ξ(x, t)〉 = 0,
〈

ξ(x, t)ξ(x′, t ′)
〉

= 2σ
2
δ(t− t ′) f (x−x′) .

We are particularly interested in the theoretical limitf (x−x′)→ δ(x−x′), that induces the
practical problem thatw becomes discontinuous with respect tox. Small spatial correlations,
however, are not expected to change the critical properties of the model (see Ref. [55] for
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2.4 Stochastic Modelling of Chaotic Fluctuations

a discussion of correlated noise in the closely related KPZ equation, which is described in
the following paragraph).

By application of the Hopf-Cole transformationh = ln |w|, Eq. (2.17) is transformed
into [91]

∂h(x, t)
∂t

= c+ ξ(x, t)+ ε∆h(x, t)+ ε[∇h(x, t)]2 .

This is the Kardar-Parisi-Zhang (KPZ) equation for growing and roughening interfaces [66].
For this well-studied equation several scaling laws are known [9, 55] that are also found in
the perturbation dynamics of spatially extended dynamical systems [91, 93]. The average
velocity of the saturated interface is equal to the largest Lyapunov exponent,

λ = c+ ε lim
t→∞

〈
[∇h(x, t)]2

〉
x .

Using this equivalence, finite-time and finite-size scaling relations for the Lyapunov expo-
nent have been derived [93].

In Ch. 5 we study the synchronization transition of coupled spatially extended dynami-
cal systems. There a nonlinear saturating term will be added to the stochastic PDE (2.17) to
limit the magnitude of the synchronization errorw(x, t). Nonlinear spatially extended mul-
tiplicative noise equations have been studied extensively during the last years in a variety
of contexts [105, 36, 12, 108, 51, 81, 107, 82, 40]. Some of the results that are of interest
for the synchronization transition are reported in Ch. 5. We just mention that in contrast
to the zero-dimensional case the transition parameter between stable (w→ 0) and unstable
(w finite) solutions can depend on the noise amplitude [36, 12]. Furthermore, the applica-
bility of stochastic models of chaotic spatially extended systems can be limited in systems
displaying spatio-temporal intermittency, when laminar structures play an important role in
the dynamics [18].
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In 1985 DAIDO discovered by means of numerical simulations that the Lyapunov exponents
of weakly coupled chaotic maps show a very strong dependence on the strength of the
coupling [26]. He was able to find an approximate logarithmic scaling relation and coined
the notion “coupling sensitivity of chaos” for this behaviour. Further studies with different
systems indicated that the effect is very general [27, 28, 29].

In this chapter a stochastic continuous-time model is presented that captures the essen-
tial aspects of the perturbation dynamics (the basic idea of stochastic modelling of chaotic
fluctuations is explained in Sec. 2.4). It gives a general scaling relation which includes as
a limiting case the logarithmic scaling found by DAIDO. The model further allows one to
understand the origin of the effect and the significance of certain parameters. A perturbative
method (the small noise expansion [6]) is shown to be not applicable to weakly coupled
systems. Results of numerical simulations are presented that confirm the predictions of the
derived scaling relation. Finally, a random walk picture is introduced that sheds light on the
origin of the logarithmic singularity.

Parallel to our work, a similar stochastic model has been used by CECCONI and POLITI

to estimate the Lyapunov exponent of a coupled map lattice in the limit of weak cou-
pling [22] (see also Sec. 3.1.2). The analytical calculations in Secs. 3.2.2–3.2.5 have been
carried out by RÜDIGER ZILLMER and are described in detail in his diploma thesis [112].
Some of the results of this chapter have been published in Refs. [113, 3, 114].

3.1 Coupling Sensitivity of Chaos

3.1.1 The Effect

The basic system already studied by DAIDO consists of two coupled one-dimensional maps,

u1(t +1) = f (u1(t))+ εg(u2(t),u1(t)) ,
u2(t +1) = f (u2(t))+ εg(u1(t),u2(t)) ,

(3.1)

wheret ∈ Z is the discrete time variable,ε is the coupling parameter (i.e. the coupling
strength),u1 andu2 are the state variables,f is the nonlinear map, andg is the coupling
function. In the following we always chooseg(u2,u1) = f (u2)− f (u1), corresponding to
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Figure 3.1: Coupled skew Bernoulli maps, Eq. (3.3). (a) The Lyapunov exponentsλ1−Λ1 (solid
line) andλ2−Λ2 (dashed line) versusε for a = 1/3. (b) The same data in scaled coordinates.

diffusive coupling.1 We emphasize, however, that the effects described in this chapter are
also found for other coupling functions.

Since the system under study is two-dimensional, we can calculate two Lyapunov ex-
ponents by studying the dynamics of the linearized system

w1(t +1) = (1− ε) f ′(u1(t))w1(t)+ ε f ′(u2(t))w2(t) ,
w2(t +1) = (1− ε) f ′(u2(t))w2(t)+ ε f ′(u1(t))w1(t) ,

(3.2)

wheref ′ denotes the derivative off . Without coupling,ε = 0, we have two identical systems
with the same Lyapunov exponentsΛ . When coupling is introduced, the Lyapunov expo-
nents are in general different. Furthermore, their values depend on the coupling parameter
ε. We thus have the two Lyapunov exponentsλ1(ε) andλ2(ε).

The observation of DAIDO was that for small values of the coupling parameter,ε �
1, the Lyapunov exponents diverge from each other and from the zero coupling valueΛ

according to

λ1−λ2∼−
1

lnε

=
1
| lnε|

, λ1,2−Λ ∼ 1
| lnε|

.

He found this to be a common behaviour of different mapsf and different coupling func-
tionsg [26].

As a first example we study the dependence of two coupled skew Bernoulli maps on the
coupling parameter. The skew Bernoulli map is defined as (see also Sec. 2.1.3)

f : [0,1]→ [0,1] , u 7→
{

u/a if u≤ a,
(u−a)/(1−a) if u> a,

(3.3)

1Naively choosingg(u2,u1) = u2−u1 would give rise to the possibility that theu1,2(t + 1) lie outside of the
interval that the mapf is acting on (see also Sec. 2.2).
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wherea ∈ (0,1) is a parameter. The Lyapunov exponents of the system (3.1) of coupled
maps are calculated by standard numerical methods (cf. App. A.1). In Fig. 3.1 the differ-
ences of the Lyapunov exponentsλ1,2 from the single map valueΛ are shown as functions
of the coupling parameterε. From Fig. 3.1(b) it can be seen that for small values ofε these
differences scale according to

λi−Λ ∼ 1
| lnε|

, i = 1,2.

3.1.2 Previous Theoretical Results

There have been different theoretical approaches to understand the origin of the coupling
sensitivity of chaos. They have in common that they started from discrete-time dynamics,
i.e., coupled maps.

DAIDO used an expansion of the local Lyapunov exponents of coupled maps and was
able to reproduce the 1/ |lnε| dependence [27]. He pointed out out the importance of fluc-
tuations of the local expansion rates and stressed that this prerequisite distinguishes the
coupling sensitivity from the usual sensitive dependence on initial conditions. He later in-
troduced a discrete-time stochastic model that shows the logarithmic singularity, but not the
quantitative dependence on the magnitude of fluctuations of the local expansion rate [29].

The following theoretical results have been obtained for the largest Lyapunov exponent
of coupled map lattices with weak coupling. In that context, which corresponds to the limit
of infinitely many (instead of just two) coupled systems, a similar logarithmic singularity
(with different prefactors) is observed.

L IVI et al. found an analogy to the problem of directed polymers in random media.
They used a mean field approach and a tree approximation to estimate the dependence of
the Lyapunov exponent on the coupling strength [75]. While their model approximately
shows the 1/ |lnε| dependence, it wrongly predicts a phase transition at a critical coupling
strength.

CECCONI and POLITI were able to improve the previous approach by using ann-tree
approximation [21]. They found that the critical coupling strength of the spurious phase
transition shifts to higher values ofε with increasing tree depthn.

Finally, CECCONIand POLITI used a continuous-time approximation of a discrete-time
model [22]. Parallel to our work, they found a relation similar to our result (3.11) (including
the quantitative dependence on the magnitude of fluctuations of the local expansion rate),
but with different prefactors because of the high dimensionality. Furthermore, they were
able to find an approximate result for coupled maps which have derivatives with fluctuating
signs.

Our own approach does not start from coupled maps, but uses a simple continuous-
time stochastic model of the perturbation dynamics with the key ingredients of exponential
growth, finite-time fluctuations, and coupling. It further allows for different Lyapunov ex-
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ponents of the coupled systems, which is needed to understand the phenomenon of avoided
crossing of Lyapunov exponents (see Ch. 4).

3.2 Analytical Approach

3.2.1 Stochastic Model

The universality of the effect of coupling sensitivity of chaos indicates that there exists an
underlying mechanism not connected with any special system. Furthermore, the effect has
been found for both two- and higher-dimensional systems. The basic ingredients common to
all studied systems are temporal fluctuations (due to the chaotic nature of the dynamics) and
weak coupling. Since we are interested in the Lyapunov exponents, we look for a model for
the perturbation dynamics, Eq. (3.2). We replace the fluctuating derivativesf ′ of the chaotic
function by stochastic processes. In order to be able to derive a Fokker-Planck equation,
we use Gaussian distributed processes. Their means and variances are connected with the
chaotic systems as will be explained below. To include the more general case of coupled
nonidentical systems, we allow these parameters to be different for the coupled systems.

Since the effect of coupling sensitivity is already found in two-dimensional systems, a
two-dimensional model can be expected to be sufficient. For higher-dimensional systems,
our model describes the dynamics in the directions corresponding to the largest Lyapunov
exponents of the individual systems. Summarizing, we propose the two-dimensional system
of Langevin equations

dw1(t)
dt

= [Λ1 + χ1(t)]w1(t)+ ε[w2(t)−w1(t)] ,

dw2(t)
dt

= [Λ2 + χ2(t)]w2(t)+ ε[w1(t)−w2(t)]
(3.4)

as a continuous-time model for the linearized equations of the coupled chaotic systems.
These equations have to be interpreted in the Stratonovich sense. The choices of multiplica-
tive noise processes and the Stratonovich interpretation are explained in Sec. 2.4.1. The
Gaussian stochastic processesχ1 andχ2 are independent and distributed according to

〈χi(t)〉 = 0,
〈

χi(t)χ j(t ′)
〉

= 2σ
2
i δi j δ(t− t ′) , i, j ∈ {1,2} ,

where the averages are over different realizations. Three groups of parameters describe three
important ingredients of the dynamics:

1. TheLyapunov exponentsof the uncoupled systems are described by the constants
Λ1,2.

2. Thefluctuations of local expansion ratesof the uncoupled systems are characterized
by the parametersσ2

1,2. They are closely related to the distribution of local (finite-time)
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Lyapunov exponentsλ(t), see Sec. 2.1.2. For the stochastic model (3.4) the local
Lyapunov exponents are finite-time averages of the Gaussianδ -correlated processes,
so that their distribution is also Gaussian with meanΛ and variance 2σ2/t [25],

Prob(λ(t))∼ exp

(
− t[λ(t)−Λ ]2

(2σ)2

)
.

An approximate value ofσ2 can thus be calculated from the variance of local Lya-
punov exponents of a given chaotic system. In connection with the numerical simu-
lations in Sec. 3.4, the parametersσ

2 will be calculated for different systems.

3. Thecoupling is described by the coupling parameterε. For a while a symmetrical
coupling is assumed, the case of asymmetrical coupling is considered below.

It has to be stressed that we assume the statistical properties of the individual systems
(characterized by the distributions of the stochastic processesχ1,2) to be independent of the
coupling. This assumption can be justified by means of results from a perturbation analysis
of weakly coupled maps [20] indicating that the invariant measure depends on the cou-
pling strength in a nonsingular way. Nevertheless, our model will certainly fail for strongly
coupled systems.

Without fluctuations,σ2
1 = σ

2
2 = 0, and equal Lyapunov exponents of the uncoupled

systems,Λ1 = Λ2 = Λ , we have a two-dimensional system of linear differential equations,

d
dt

(
w1

w2

)
=
(

Λ − ε ε

ε Λ − ε

)(
w1

w2

)
.

The Lyapunov exponents are simply the eigenvalues of the time-independent real symmetric
matrix (see Sec. 2.1.2). We thus obtain

λ1 = Λ , λ2 = Λ −2ε

for the Lyapunov exponents of the coupled systems. This means that without fluctuations of
the local expansion rates we have no coupling sensitivity of chaos, a result that was already
observed by DAIDO [26].

3.2.2 Fokker-Planck Treatment

To obtain the value of the largest Lyapunov exponent of the stochastic model, we now
calculate the stationary probability density of the associated Fokker-Planck equation. The
analytical calculations are described in detail in Ref. [112], here only an overview of the
procedure is given.

First we perform a transformation to new variables. For large times and positive cou-
pling ε both variablesw1,2 have the same sign. It is easy to see that the regionsw1,w2 > 0

23



3 Scaling of Lyapunov Exponents

andw1,w2 < 0 are absorbing ones because forw1 = 0 we have ˙w1 = εw2 and forw2 = 0
we have ˙w2 = εw1. Thus eventually one observes the state withw1w2 > 0 independently of
initial conditions. So the transformation

v1 = ln(w1/w2) , v2 = ln(w1w2) ,

can be performed, leading to the equations

dv1

dt
= ξ1−2ε sinhv1 + Λ1−Λ2 , (3.5)

dv2

dt
= ξ2 +2ε coshv1 + Λ1 + Λ2−2ε , (3.6)

whereξ1 = χ1−χ2 andξ2 = χ1 + χ2. By means of the transformation of variables we have
simplified the equations in two ways. First, the multiplicative noise processes have been
transformed to additive ones. Second, Eq. (3.5) forv1 is independent of Eq. (3.6) forv2.
Thus, although the stochastic processesξ1,2 are no more statistically independent, we can
write the Fokker-Planck equation for the probability densityρ(v1, t) [100] (see App. A.2),

∂ρ(v1, t)
∂t

=
[
2ε coshv1 +2ε sinhv1

∂
∂v1
− (Λ1−Λ2)

∂
∂v1

+2σ
2 ∂2

∂v2
1

]
ρ(v1, t) , (3.7)

whereσ
2 = (σ

2
1 + σ

2
2)/2. The stationary solution of (3.7) is given by [112]

ρstat(v1) = Nexp
(

lv1−
ε

σ
2 coshv1

)
, (3.8)

wherel = (Λ1−Λ2)/(2σ
2) andN is a normalization constant.

Basing on the solution (3.8) we now calculate the largest Lyapunov exponent of the
coupled system, defined by

λ1 = lim
t→∞

1
t

〈
ln
√

w2
1 +w2

2

〉
= lim

t→∞

1
2t

〈
ln(w2

1 +w2
2)
〉
,

where the averages are over different realizations of the noise processes. The logarithm can
be expressed in terms ofv1 andv2 as

ln(w2
1 +w2

2) = ln

(
w1w2

(
w1

w2
+

w2

w1

))
= v2 + ln(2coshv1) .

Since one is interested in the long-time limit, the stationary distribution (3.8) ofv1 may be
used, leading to

λ1 = lim
t→∞

{
1
2t
〈v2〉ρstat

+
1
2t
〈ln(2coshv1)〉

ρstat

}
.
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3.2 Analytical Approach

In the following, all averages are meant with respect to the stationary distribution. Because
〈ln(2coshv1)〉 is finite and time-independent, the second term vanishes fort → ∞. In the
first term,〈v2/t〉 can be replaced by〈v̇2〉 . Thus the Lyapunov exponent can be calculated
by averaging the r.h.s. of Eq. (3.6),

λ1 =
1
2
〈v̇2〉 = ε 〈coshv1〉 +

1
2

(Λ1 + Λ2−2ε) . (3.9)

The averaging with the stationary distributionρstat(v1) yields (see Ref. [112] for details)

〈coshv1〉 =
K1−|l |(ε/σ

2)+K1+|l |(ε/σ
2)

2K|l |(ε/σ
2)

,

where theKl are modified Bessel functions (Macdonald functions) [1]. Substituting this in
Eq. (3.9) we obtain a final analytical formula for the largest Lyapunov exponent. We write
it in scaling form,

λ1− (Λ1 + Λ2−2ε)/2
σ

2 =
ε

σ
2

K1−|l |(ε/σ
2)+K1+|l |(ε/σ

2)
2K|l |(ε/σ

2)
. (3.10)

This form demonstrates that the essential parameters of the problem are the coupling param-
eter and the Lyapunov exponents’ mismatch normalized to the fluctuation of the exponents,

ε

σ
2 and l =

Λ1−Λ2

2σ
2 ,

respectively. If the Lyapunov exponents of the two interacting systems are equal,Λ1 = Λ2 =
Λ , the parameterl vanishes and we obtain (cf. [22])

λ1−Λ = ε

K1(ε/σ
2)

K0(ε/σ
2)
− ε . (3.11)

We gain further insight into the scaling behaviour by approximating the modified Bessel
functions. Simplified expressions can be obtained in the following limiting cases:

Small coupling, equal Lyapunov exponents. For small couplingε/σ
2, the leading term

in ε is singular as it follows from the expansions ofK1 andK0 [1] in Eq. (3.11),

λ1−Λ ≈ σ
2

| ln(ε/σ
2)|
. (3.12)

This formula corresponds to DAIDO ’s singular dependence of the Lyapunov exponent
on the coupling parameter[26, 27, 28] and will be checked by means of numerical
simulations in Sec. 3.4. It is valid in all cases when identical chaotic systems are cou-
pled symmetrically, provided that the Lyapunov exponents in these systems fluctuate
(σ2 > 0). Moreover, even for different systems having, however, equal Lyapunov ex-
ponents (but not necessarily equal fluctuations of the exponents) we get the same
singularity as for identical systems. DAIDO arrived at a similar result in his analytical
treatment of coupled one-dimensional maps, cf. Eq. (19) of Ref. [29].
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3 Scaling of Lyapunov Exponents

No fluctuations, equal Lyapunov exponents. With vanishing fluctuations,σ2→ 0, and
fixed coupling parameter, we haveε/σ

2→ ∞. In this case the fraction in Eq. (3.11)
becomes unity,K1(ε/σ

2)/K0(ε/σ
2)→ 1, and we obtain

λ1 = Λ .

This is consistent with the result one directly gets from the model without fluctua-
tions, see Sec. 3.2.1.

Small coupling, different Lyapunov exponents. The expansion (3.12) remains valid for
small values of mismatch|l |, if (ε/σ

2)|l | is close to 1. For larger mismatch, when(
ε

σ
2

)|l |
� 1,

the largest Lyapunov exponent is

λ1≈ 2σ
2|l |Γ(1−|l |)

Γ(1+ |l |)

(
ε

2σ
2

)2|l |
+

1
2

(|Λ1−Λ2|+ Λ1 + Λ2)︸ ︷︷ ︸
max{Λ1,Λ2}

. (3.13)

The singularity is now of the power-law type, with the power depending on the sys-
tem’s mismatch. Note that this is the correction to the largest of the Lyapunov expo-
nents of the uncoupled systems. The dependence of

δλ =
λ1− (Λ1 + Λ2−2ε)/2

σ
2 (3.14)

on |l | is shown in Fig. 3.2 for the coupling parameterε/σ
2 = 10−5. Plotted are

Eq. (3.10) and the appropriate form of the approximation (3.13),

δλ ≈ |l |
[
1+2

Γ(1−|l |)
Γ(1+ |l |)

(
ε

2σ
2

)2|l |
]
.

With increasing difference|l | the influence of the coupling onλ1 decreases. For large
|l | we thus haveλ1≈maxΛ1,2, such that Eq. (3.14) becomes (forε/σ

2� |l |)

δλ ≈ |Λ1−Λ2|/2+ ε

σ
2 ≈ |l | ,

which can also be seen in Fig. 3.2.

Large coupling. For ε/σ
2� 1 the expansion of (3.10) gives

λ1≈
σ

2

2
− (1+3l2)σ

4

8ε

+
1
2

(Λ1 + Λ2) . (3.15)

It has to be kept in mind, however, that for large coupling the Langevin equations (3.4)
cannot be expected to be a reliable model of coupled chaotic systems. Therefore
Eq. (3.15) should be seen as a result which is only valid for the model itself.
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3.2 Analytical Approach

0 0.1 0.2 0.3

|l|

0

0.1

0.2

0.3

δλ
(|l

|)

Figure 3.2: The dependence ofδλ (see Eq. (3.14)) on the difference|l |. Shown are the exact
result (3.10) (solid line), the approximation (3.13) (dashed line), and the asymptotic behaviourδλ =
|l | (dash-dotted line).

3.2.3 The Second Lyapunov Exponent

The sum of Lyapunov exponents can be calculated from the divergence of the phase space
volume using Eqs. (3.4),

λ1 + λ2 =
〈

∂ẇ1

∂w1
+

∂ẇ2

∂w2

〉
= Λ1 + Λ2−2ε .

This enables us to find an expression for the second Lyapunov exponent,

λ2−Λ2 =−(λ1−Λ1)−2ε . (3.16)

The singularity is the same as for the first Lyapunov exponent, it just has the opposite sign.
The linear decrease corresponds to the synchronization effect, leading to a negativeλ2 for
coupling strengths larger than some criticalεc.

3.2.4 Generalized Lyapunov Exponents

By means of the Furutsu-Novikov relation (see App. A.2) it is further possible to obtain
results for some of the generalized Lyapunov exponents [25]

L(q) = lim
t→∞

1
t

ln
〈(

w2
1 +w2

2

)q/2
〉
,

where the average is over different realizations of the noise processes. Details can be found
in Refs. [112, 113]. Here we only give the results (forΛ1 = Λ2 = Λ ) [113]

L(1) = Λ + σ
2 , (3.17)

L(2) = 2Λ +3σ
2−2ε +

√
σ

4 +4ε
2 . (3.18)
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3 Scaling of Lyapunov Exponents

Together with the trivial general resultL(0) = 0 we can approximateL(q) with the
parabola [113]

L(q) = αq+ βq2

with the parameters

α = 2L(1)− L(2)
2

and β =−L(1)+
L(2)

2
,

giving

L(q) = q

(
Λ +

σ
2

2
+ ε− 1

2

√
σ

4 +4ε
2

)
+q2

(
σ

2

2
− ε +

1
2

√
σ

4 +4ε
2

)
. (3.19)

In the two limiting cases of weak and strong coupling, the square root in Eq. (3.19) can
be expanded. In first order we obtain for weak coupling (ε/σ

2� 1)

L(q)≈ q

(
Λ + ε− ε

2

σ
2

)
+q2

(
σ

2− ε +
ε

2

σ
2

)
,

while for strong coupling (ε/σ
2� 1) we obtain

L(q)≈ q

(
Λ +

σ
2

2
− σ

4

8ε

)
+q2

(
σ

2

2
+

σ
4

8ε

)
, (3.20)

The latter expression will be compared with the result of the small noise expansion in
Sec. 3.3 below.

3.2.5 Asymmetrical Coupling

An interesting generalization of the stochastic model is to consider asymmetrical coupling,

dw1(t)
dt

= [Λ1 + χ1(t)]w1(t)+ ε1[w2(t)−w1(t)] ,

dw2(t)
dt

= [Λ2 + χ2(t)]w2(t)+ ε2[w1(t)−w2(t)] ,

which can be reduced to the symmetric case by means of the transformation

w̃1 =
√

ε2w1 , w̃2 =
√

ε1w2 .

We thus obtain the result

λ1− (Λ1 + Λ2− ε1− ε2)/2
σ

2 =
ε

σ
2

K1−|l |(ε/σ
2)+K1+|l |(ε/σ

2)
2K|l |(ε/σ

2)
,
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3.3 Small Noise Expansion

with the effective coupling parameter and the effective mismatch

ε =
√

ε1ε2 and l =
1

2σ
2 [(Λ1− ε1)− (Λ2− ε2)] ,

respectively [113].
In the extreme case of unidirectional coupling we can calculate the Lyapunov exponents

directly from the model

dw1(t)
dt

= [Λ1 + χ1(t)]w1(t) ,

dw2(t)
dt

= [Λ2 + χ2(t)]w2(t)+ ε[w1(t)−w2(t)] .

For the first autonomous equation we obtainλ1 = Λ1. The sum of both Lyapunov exponents
can again be calculated from the divergence of the phase space volume. This gives us the
value of the second Lyapunov exponent,λ2 = Λ2− ε. For unidirectionally coupled systems
we thus have no coupling sensitivity [113].

3.3 Small Noise Expansion

Expansions of the largest Lyapunov exponent as well as the generalized Lyapunov expo-
nents of a stochastic system in terms of the noise amplitude have been found by ARNOLD et
al. [6]. Relevant for our model is the white noise case with two distinct real eigenvalues of
the deterministic system. The linear Stratonovich stochastic differential equation (see also
App. A.2) has the form

dx = Axdt + δ

m

∑
i=1

B ix◦dWi(t) , (3.21)

wherex ∈ R2, B i and

A =
(

a1 0
0 a2

)
, a1 > a2 ,

are real 2×2 matrices,δ is the small noise amplitude, and theWi(t) are independent Wiener
processes. The largest Lyapunov exponent can then be expanded as [6]

λ
δ

1 = a1 +
δ

2

2

m

∑
i=1

bi,12bi,21+o(δ
2) .

The expansion of the generalized Lyapunov exponents is given by

Lδ (q) = q

(
a1 +

δ
2

2

m

∑
i=1

bi,12bi,21

)
+q2 δ

2

2

m

∑
i=1

b2
i,11+qo(δ

2)+o(q2) .
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3 Scaling of Lyapunov Exponents

In the following we assumeΛ1 = Λ2 = Λ andε/σ
2� 1 (small noise amplitude). Our

model (3.4) can be written as

dw = Awdt + δ

2

∑
i=1

B iw◦dWi(t) ,

wherew = (w1,w2)T , δ =
√

2σ
2, dWi(t) = χi(t)dt,

A =
(

Λ − ε ε

ε Λ − ε

)
, B1 =

(
1 0
0 0

)
, and B2 =

(
0 0
0 1

)
.

The eigenvalues ofA area1 = Λ anda2 = Λ −2ε. In order to bring our system to the form
of Eq. (3.21), we have to diagonalizeA and transform the matricesB i accordingly. This is
accomplished by the orthogonal matrix made up of the eigenvectors,

O =
1
2

(
1 1
1 −1

)
.

From the resulting matrices

OTB1O =
1
2

(
1 1
1 1

)
and OTB2O =

1
2

(
1 −1
−1 1

)
we obtain the expansions

λ
δ

1 = Λ +
σ

2

2
and

Lδ (q) = q

(
Λ +

σ
2

2

)
+q2 σ

2

2
.

Comparing these results with our results obtained by means of the Fokker-Planck equation
(Eqs. (3.15) and (3.20) for small noise amplitude, i.e., largeε/σ

2), we find that they co-
incide up to orderσ2. Theε-dependence ofλ1 andL(q) occurs, however, in orderσ4 and
is therefore not captured by the small noise expansion up to orderσ

2. Furthermore, the
Fokker-Planck treatment gives the general result (3.10) which is also valid for small values
of ε/σ

2 (large noise amplitudes). Since the stochastic model is only valid for small values
of ε, the small noise expansion is not applicable in the context of weakly coupled chaotic
systems.

3.4 Numerical Simulations

We now compare the results obtained for the system of continuous-time Langevin equations
with numerical calculations for both continuous- and discrete-time deterministic systems.
The Lyapunov exponents are calculated as described in App. A.1.
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3.4 Numerical Simulations

3.4.1 Discrete Maps

We first study systems of two diffusively coupled one-dimensional mapsf1,2, Eq. (3.1). To
have a good correspondence to the theory, we use only mappings with a constant sign off ′

below, so that the fluctuations of the local expansion rate are the only source of irregularity
of the perturbation dynamics. Another source of irregularity could be irregular changes of
the sign of the derivativef ′ (as for the logistic and the tent maps). Such an irregularity is not
covered by our continuous-time approach, but also leads to a logarithmic singularity similar
to Eq. (3.12), see Ref. [22].

Skew Bernoulli Maps

We first consider the skew Bernoulli map (3.3). For the uncoupled map, the Lyapunov ex-
ponent and the magnitude of fluctuations are given by (see Sec. 2.1.3)

Λ =−alna− (1−a) ln(1−a) (3.22)

and

σ
2 =

1
2

a(1−a)
(

ln
a

1−a

)2

, (3.23)

respectively. Fora = 1/2 we obtain the ordinary Bernoulli map. In this case, there are no
fluctuations of the local multipliers (σ

2 = 0), and no coupling sensitivity of the Lyapunov
exponents is observed.
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Figure 3.3: Coupled identical skew Bernoulli maps, Eq. (3.3). (a) The Lyapunov exponentsλ1−Λ

andλ2−Λ versusε for a = 1/3 (solid lines),a = 1/4 (dotted lines),a = 1/5 (dashed lines), and
a = 1/6 (dash-dotted lines). (b) The same graphs in scaled coordinates. The long-dashed lines show
the analytical results(λ1−Λ)/σ

2 = 1/| ln(ε/σ
2)| and(λ2−Λ)/σ

2 =−1/| ln(ε/σ
2)|, see Eqs. (3.12)

and (3.16).
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3 Scaling of Lyapunov Exponents

Figure 3.3(a) shows the differencesλ1,2−Λ versusε for maps with different values of
a 6= 1/2. From Fig. 3.3(b) it can be seen that different curves collapse onto single lines
for both exponents when plotted in the rescaled form according to (3.10), namely as(λ1−
Λ)/σ

2 versus 1/| ln(ε/σ
2)|. The resulting lines are in very good agreement with the leading

term of the theoretical prediction(λ1−Λ)/σ
2 = 1/| ln(ε/σ

2)|, which is also shown.
No such good accordance between theory and numerical experiment is found in the case

of generalized Lyapunov exponents. In Fig. 3.4(a,b) the results forL(1) andL(2) are shown
for small values ofε. Also shown are the theoretical predictions from Eqs. (3.17) and (3.18),
respectively. The rough correspondence is completely lost for larger values ofε, although
the considerations leading to Eqs. (3.17) and (3.18) are not restricted to smallε.

Much better results are achieved if the derivativesf ′i in the linearized system (3.2) are
replaced by independent and identically distributed Gaussian stochastic variablesξi (i =
1,2). Then the system of equations reads (due to the discrete time the Lyapunov exponents
and their finite-time fluctuations enter as arguments of exponentials, see Sec. 2.1.2)

w1(t +1) = (1− ε)eξ1(t)w1(t)+ εeξ2(t)w2(t) ,

w2(t +1) = (1− ε)eξ2(t)w2(t)+ εeξ1(t)w1(t) ,
(3.24)

with

〈ξi(t)〉 = Λ ,
〈
[ξi(t)−Λ ][ξ j(t ′)−Λ ]

〉
= 2σ

2
δi j δtt ′ , i, j ∈ {1,2} .
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Figure 3.4: Generalized Lyapunov exponents for the skew Bernoulli maps. (a) Rescaled exponent
[L(1)−Λ ]/σ

2 versusε for the same values ofa as in Fig. 3.3. The long-dashed line shows the
analytical result[L(1)−Λ ]/σ

2 = 1, see Eq. (3.17). (b) Rescaled exponent[L(2)− 2Λ ]/σ
2 versus

ε/σ
2 for the same values ofa as in Fig. 3.3. The long-dashed line shows the analytical result[L(2)−

2Λ ]/σ
2 = 3−2ε/σ

2 +
√

1+4(ε/σ
2)2, see Eq. (3.18).
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Figure 3.5: Rescaled generalized Lyapunov exponents in stochastic maps. (a) The exponent[L(1)−
Λ ]/σ

2 versusε for Λ andσ
2 corresponding to the values ofa used for Figs. 3.3 and 3.4. The long-

dashed line shows the analytical result. Compared with Fig. 3.4(a), the relative deviation of the
numerical data from the analytical result is small. (b) The exponent[L(2)−2Λ ]/σ

2 versusε/σ
2 for

Λ andσ
2 corresponding to the values ofa used for Figs. 3.3 and 3.4. The long-dashed line shows

the analytical result as in Fig. 3.4(b).

In Figs. 3.5(a,b) the results forL(1) andL(2), respectively, are shown together with the
analytical curves. The values ofΛ andσ

2 were calculated by means of Eqs. (3.22) and (3.23)
with the values ofa used above for the skew Bernoulli map.

An explanation for the discrepancy between the deterministic and stochastic results is
that the distribution off ′(ui) is changed with increasingε, while the distribution of the
stochastic variablesξi remains constant. Furthermore,f ′(u1) and f ′(u2) are not statistically
independent for larger values ofε. These effects have no observable influence in the case of
usual Lyapunov exponents (Fig. 3.3) because of the singularity. In the case of generalized
Lyapunov exponents, however, the nonsingular scaling functions are much more sensitive
against changes in the distribution of multipliers.

Different Maps

One main result of the analytical approach is that the singularity does only depend on the
averageσ2 = (σ

2
1 + σ

2
2)/2 of the fluctuations of local expansion rates and on the mismatch

l = (Λ1−Λ2)/(2σ
2) of the Lyapunov exponents of the uncoupled systems. Although no

singularity occurs ifσ2 = 0, we can expect to observe coupling sensitivity in the case of one
system with fluctuations (σ

2
1 > 0) coupled to a different one without fluctuations (σ

2
2 = 0),

given that the mismatchl is sufficiently small.
In order to check this prediction, we again numerically iterate the systems (3.1)

and (3.2), now choosing two different maps. The first map is again the skew Bernoulli
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Figure 3.6: Different maps. (a)λ1−Λ andλ2−Λ versusε for two coupled skew Bernoulli maps
with a = 1/4 (solid lines) as well as one skew Bernoulli map witha = 1/4 coupled with the dif-
ferent map (3.25) (dotted lines). (b)(λ1−Λ)/σ

2 and(λ2−Λ)/σ
2 versus 1/| ln(ε/σ

2)| for the same
examples as in Fig. 3.6(a). The long-dashed lines show the analytical results as in Fig. 3.3(b).

map (f1(u) = f (u) as in Eq. (3.3)), while the second map is defined as

f2(u) = eΛ u (mod 1) , (3.25)

whereΛ is the Lyapunov exponent of the skew Bernoulli mapf (u) (see Eq. (3.22)). With
this choice we have the parametersσ

2
1 > 0, σ

2
2 = 0, andl = 0 (becauseΛ1 = Λ2 = Λ ).

In Fig. 3.6 the result is compared with the previous result for two coupled identical
skew Bernoulli maps (a = 1/4 in either case). As expected, the logarithmic singularity is
observed in both cases, although the deviation|λi−Λi | is smaller ifσ2

2 = 0. When rescaled
with the averageσ2, however, the curves collapse onto single lines for the first and second
Lyapunov exponents, as can be seen in Fig. 3.6(b).

Strange Nonchaotic Attractors

DAIDO found out that for coupled logistic mapsf (u) = 4u(1−u) the Lyapunov exponents
exhibit power-law instead of logarithmic singular behaviour due to anomalous fluctuations
of the finite-time Lyapunov exponents [29]. Here we report a similar observation in the case
of coupled strange nonchaotic attractors.

Fluctuations of finite-time Lyapunov exponents is a typical feature of chaotic systems,
but in some nonchaotic systems the Lyapunov exponents fluctuate as well. To this class
belong strange nonchaotic attractors (SNAs) that have a negative maximal Lyapunov expo-
nent, but a complex fractal structure in the phase space (see, e.g., Ref. [92]). The fluctuations
of finite-time Lyapunov exponents are present in SNAs [92], but they are much more corre-
lated than in chaotic systems. We demonstrate below that this leads to a weaker singularity
in the Lyapunov exponents’ dependence on the coupling.
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Figure 3.7: The Lyapunov exponents in coupled strange nonchaotic attractors in natural coordinates
(a) and in a log-log representation (b). The dashed line in (b) has a slope 1/2.

We numerically studied two coupled quasiperiodically forced maps having strange non-
chaotic attractors, using

f (u) = 2.5tanh(u)|sin(ωt + φ)| , (3.26)

whereω = (
√

5− 1)/2 is the frequency of the quasiperiodic driving. The model (3.26)
has been studied rigorously in Ref. [50, 67]. The results are presented in Fig. 3.7. The
dependence of the Lyapunov exponents on the coupling has a singularity, but this singularity
contrary to Eq. (3.12) is a power law, with a power close to 1/2. A detailed theory needs a
correct account of nontrivial correlation properties of the SNA.

3.4.2 Delay Differential Equations

Our theory suggests that the effect of coupling sensitivity of chaos results from the cou-
pling of fluctuating systems alone. It seems therefore natural to expect that the loga-
rithmic singularity can also be found for coupled continuous-time systems. Furthermore,
DAIDO observed the effect of coupling sensitivity of chaos not only for coupled one-
dimensional maps, but also for two-dimensional discrete-time maps [28]. Here we give nu-
merical evidence that the logarithmic singularity is also observed in infinite-dimensional and
continuous-time systems. As an example we study a system of two coupled one-dimensional
delay differential equations. A delay differential equation has an infinite number of Lya-
punov exponents, and for large delays usually a finite number of exponents is positive. The
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Figure 3.8: The Lyapunov exponents in the coupled Ikeda equations, in natural (a) and scaled (b)
coordinates. Open circles and open squares: the splitting of the positive Lyapunov exponent; open
triangles and open rhombs: the splitting of the zero exponent; crosses and stars: the splitting of the
closest to zero negative exponent.

system we study reads

du1(t)
dt

= f (u1(t),u1(t− τ))+ ε[u2(t)−u1(t)] ,

du2(t)
dt

= f (u2(t),u2(t− τ))+ ε[u1(t)−u2(t)] ,

where
f (u(t),u(t− τ)) =−u(t)+asinu(t− τ)

corresponds to the Ikeda equation, describing an optical resonator system [60]. The parame-
ter values were chosen to bea= 3.0 andτ = 5.0. We integrated the coupled Ikeda equations
together with the linearized equations, using the fourth order Runge-Kutta routine.

The results are presented in Figs. 3.8(a,b). For the chosen parameters, the uncoupled
Ikeda system has one positive and one zero (due to invariance to time shifts) Lyapunov
exponent, all other exponents are negative. In the coupled system the two former zero expo-
nents (the third and the fourth ones) are not affected by the coupling sensitivity: one expo-
nent remains exactly zero, changes of the other one are hardly seen for small couplings. We
attribute this to the fact that the zero Lyapunov exponent in an autonomous system does not
fluctuate. The other Lyapunov exponents (the positive and the first negative ones), however,
show the logarithmic singularity.

Further numerical simulations revealed that the Lyapunov exponents of coupled Lorenz
systems (see Sec. 2.3.2) of ordinary differential equations also show the logarithmic singu-
larity. Together, our simulations corroborate the conjecture that the coupling sensitivity of
chaos is a general phenomenon of coupled fluctuating systems.
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3.5 Random Walk Picture

3.5 Random Walk Picture

The origin of the logarithmic singularity can be understood by a qualitative considera-
tion [113, 3]. For simplicity we assumeΛ1 = Λ2 = 0 andσ

2
1 = σ

2
2 = σ

2� ε, leading to
the (Stratonovich) model

dw1(t)
dt

= σχ̃1(t)w1(t)+ ε[w2(t)−w1(t)] ,

dw2(t)
dt

= σχ̃2(t)w2(t)+ ε[w1(t)−w2(t)]

with

〈χ̃i(t)〉 = 0,
〈

χ̃i(t)χ̃ j(t ′)
〉

= 2δi j δ(t− t ′) , i, j ∈ {1,2} .

When rescalingt→ t/σ
2, we have to rescalẽχ→ σχ̃ because of theδ -correlation. Dividing

by σ
2 we obtain

dw1(t)
dt

= χ̃1(t)w1(t)+
ε

σ
2 [w2(t)−w1(t)] ,

dw2(t)
dt

= χ̃2(t)w2(t)+
ε

σ
2 [w1(t)−w2(t)] .

(3.27)

Since the amplitudes of the noise processesχ̃1,2 are of order one andε/σ
2� 1, the coupling

in the first equation of (3.27) only influences the dynamics ofw1 if w2 ∼ σ
2w1/ε � w1. In

this case the influence of the coupling on the dynamics ofw2 in the second equation of (3.4)
is small. The opposite situation occurs ifw1 ∼ σ

2w2/ε � w2. Thus the coupling leads to
effective equalization ofw1 andw2 only if the system reaches the linesw2 = σ

2w1/ε and
w1 = σ

2w2/ε in phase space, as illustrated in Fig. 3.9(a).
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Figure 3.9: A sketch of the perturbation dynamics in coupled systems. Curly lines show the random
walk not influenced by coupling; straight arrows demonstrate the effect of coupling.
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For logarithmic variablesv1,2 = lnw1,2 the model (3.27) is transformed to

dv1(t)
dt

= χ̃1(t)+
ε

σ
2

(
ev2(t)−v1(t)−1

)
,

dv2(t)
dt

= χ̃2(t)+
ε

σ
2

(
ev1(t)−v2(t)−1

)
.

(3.28)

Now the coupling in the first equation only influences the dynamics ofv1 if v2 ∼
v1 +

∣∣ln(ε/σ
2)
∣∣, and vice versa. Thus the dynamics of the system is restricted to a strip

of vertical and horizontal width 2| ln(ε/σ
2)|, see Fig. 3.9(b). Due to the additive noise

processes in model (3.28), the dynamics between the reflections correspond to a two-
dimensional random walk. The average time to reach the boundary from the middle diagonal
is [ln(ε/σ

2)]2/σ
2 [38]. The reflections introduce a drift in the direction of growingv1,2, the

contribution of each reflection to the way travelled due to this drift is| ln(ε/σ
2)|. Thus the

mean drift velocity (corresponding to the largest Lyapunov exponentλ1) is σ
2/| ln(ε/σ

2)|,
which is in perfect agreement with our theoretical result, Eq. (3.12).

3.6 Summary and Perspectives

In this chapter we used the Langevin approach to obtain statistical properties of the Lya-
punov exponents of weakly coupled dynamical systems. For the simplest system of two
coupled stochastic equations it is possible to obtain an analytical expression for the largest
Lyapunov exponent, for different values of parameters (coupling, Lyapunov exponents of
uncoupled systems, fluctuations of finite-time Lyapunov exponents). The logarithmic sin-
gularity, first discovered by DAIDO, is shown to exist even if rather different systems are
coupled, provided their Lyapunov exponents coincide. We also gave a qualitative expla-
nation of the effect, based on the interpretation of the perturbations’ dynamics as coupled
random walks.

Numerical simulations of a system with weaker stochastic properties (strange non-
chaotic attractor) showed the limits of the Langevin approach. We found a power-law sin-
gularity, possibly due to existence of long correlations in the dynamics of perturbations.

An extension of the stochastic model to three coupled identical systems as well as nu-
merical simulations led to the asymptotic result [113]

λ1−Λ ∼ 4
3

σ
2

|ln(ε/σ
2)|

for
ε

σ
2 → 0.

Together with the results for the Largest Lyapunov exponent of weakly coupled CMLs [75,
22], it can be summarized that the coupling sensitivity of chaos is a general phenomenon of
coupled fluctuating systems.

An interesting consequence of the coupling sensitivity of chaos is found in the context of
Anderson localization in disordered systems. The localization length is given by the inverse
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of the smallest positive Lyapunov exponent (see, e.g., Ref. [25]). The site-by-site coupling
of two chains of Anderson maps leads to a 1/ |lnε| dependence of the Lyapunov exponents
that is in first order also found for the localization length. Coupling two disordered solids
thus leads to a substantial increase of the localization length [115].

Lyapunov exponents are very hard to estimate from experimental time series. It is there-
fore difficult to directly observe the rather small effect of coupling sensitivity in experi-
ments. The coupling dependence of the localization length, however, may be observable via
its influence on transport coefficients like the electrical conductivity.
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4 Avoided Crossing of Lyapunov Exponents

This chapter deals with an effect that follows from the coupling sensitivity of chaos stud-
ied in the previous chapter. Consider several subsystems (e.g., maps or systems of ordinary
differential equations) depending on one or more parameters. If the parameters of the sub-
systems are randomly chosen, the Lyapunov exponents of the uncoupled subsystems will in
general be different. It may be, however, that some subsystems have nearly equal Lyapunov
exponents. If we now introduce weak coupling between the subsystems, the coupling sensi-
tivity sets in such that the spacing between Lyapunov exponents that are close to each other
without coupling increases dramatically.

It will be shown by means of numerical simulations that this effect leads to phenomena
which are qualitatively similar to, but quantitatively different from the well-known effect of
energy level repulsion in quantum systems. Basing on the results of the previous chapter, an
approximate formula for the distribution of spacings between Lyapunov exponents will be
derived. Some of the results of this chapter have been published in Ref. [4].

4.1 Lyapunov Exponents and Energy Levels

4.1.1 Numerical Evidence for Avoided Crossing

Our starting model is a system ofN symplectically coupled standard maps which are, in
general, different:

Ii(t +1) = Ii(t)+Ki sinθi(t)+
ε

N { j}∑
{ j}

sin(θi(t)−θ j(t)) ,

θi(t +1) = θi(t)+ Ii(t +1) , i ∈ {1, . . . ,N} .
(4.1)

Here Ii(t) and θi(t) are the 2π-periodic state variables at sitei and timet, and ε serves
as the coupling parameter. The coupling can be global if the sum on the r.h.s. is over all
elements in the ensemble; in this caseN { j} = N− 1. In the case of local coupling in a
one-dimensional periodic lattice, the sum is over nearest neighbours andN { j} = 2. The
parametersKi of all systems are, in general, different from each other, their random distri-
bution defines disorder in the model. Below we take all parametersKi in the region of strong
chaos,Ki > 7. The standard map used in (4.1) is the basic model of Hamiltonian chaos [73],
it describes, in particular, a periodically kicked rotator.
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4 Avoided Crossing of Lyapunov Exponents

The Lyapunov exponents are calculated with standard methods (see App. A.1) as the
logarithms of the eigenvalues of the limiting matrix

lim
t→∞

[P(t)TP(t)]1/(2t) , P(t) =
t−1

∏
τ=0

J(τ) , (4.2)

whereJ(t) is the Jacobian of the mapping (4.1) (see Sec. 2.1.2). Due to its symplecticity, a
single standard map has (for chaotic trajectories) one positive and one negative Lyapunov
exponent of the same absolute value which depends on the parameterK.

To demonstrate the avoided crossing of Lyapunov exponents, the maps in Eq. (4.1) are
now considered as depending on a common parameterη ∈ [0,1] according to

Ki = Ki(η) = Ki(0)+ η[Ki(1)−Ki(0)] .

The parametersKi(0) andKi(1) are random numbers uniformly distributed in the interval
7≤ Ki ≤ 10. We present in Fig. 4.1 the results of numerical calculations of the Lyapunov
exponents of a particular realization of a system (4.1) of six nearest-neighbour-coupled
standard maps. In Fig. 4.1(a), the six positive Lyapunov exponentsλi (i = 1, . . . ,6) are shown
as functions of the common parameterη for the caseε = 0, i.e. without coupling. As can
be expected for independent Lyapunov exponents, many crossings are observed. This is
no longer the case when a weak nearest-neighbour coupling (ε = 10−8) is introduced, as
can be seen from Fig. 4.1(b): the crossings are avoided, a behaviour which is well-known
for energy levels of quantum-mechanical systems. Note, however, a quantitative difference:
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Figure 4.1: Lyapunov exponentsλi (i = 1, . . . ,6) versus parameterη (see text) for six standard
maps with parametersKi(η). (a) Without coupling crossings of Lyapunov exponents are possible.
(b) Crossings are avoided when nearest-neighbour coupling with coupling parameterε = 10−8 is
applied. The dashed lines correspond to avoided crossings of only two coupled maps, see text.
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4.1 Lyapunov Exponents and Energy Levels

since the Lyapunov exponents are calculated from the eigenvalues of a product of random
matrices, the avoided crossing is already observed for extremely small (in absolute value)
off-diagonal elements of the single matrices.

A theoretical explanation for this strong repulsion of Lyapunov exponents will be dis-
cussed below, here we want to describe further numerical experiments showing that the
picture above is quite universal. A qualitatively similar pattern of avoided crossings has
also been obtained for a lattice of standard maps with global coupling. We have observed
it also for dissipative systems, e.g., forN globally coupled skew Bernoulli mapsfi with
parametersai ∈ (0,1) defining the location of the discontinuity (see Eq. (2.4)),

ui(t +1) = fi(ui(t))+
ε

N−1

N

∑
j=1

[ f j(u j(t))− fi(ui(t))] , i ∈ {1, . . . ,N} . (4.3)

Another dissipative system we studied is the Ikeda map for a complex amplitudeE (not to
be confused with the Ikeda delay differential equation studied in Sec. 3.4.2),

E(t +1) = a+bE(t)exp

(
ic− id

1+ |E(t)|2

)
, i =

√
−1.

which describes a chaotic regime of light propagation in a ring cavity with a nonlinear el-
ement [59]. Coupling such systems can be achieved by overlapping the light fields (see,
e.g., the experiments in Ref. [102]). Below we describe the Lyapunov exponents in coupled
Ikeda maps, where the disorder is due to different values for the parametersdi of the dif-
ferent maps, whereas the other parameters are kept constant (a = 1, b = 0.9, c = 0.4). The
Ikeda map with these parameters has one positive and one negative Lyapunov exponent; we
follow only the statistics of the positive Lyapunov exponents.

4.1.2 Energy Levels in Quantum Systems

At this point a very brief review of the energy level statistics in quantum systems (e.g.,
large atomic nuclei) is necessary to understand our line of approach. For details the reader
is referred to Refs. [53, 54, 77, 99].

The historical starting point is the observation of an avoidance of small spacings be-
tween adjacent energy levels in complex quantum systems. It was the idea of WIGNER

to approximate the matrix elements of the Hamiltonian by random numbers, such that the
energy levels correspond to the eigenvalues of large random matrices

H =

h11 · · · h1N
...

...
...

hN1 · · · hNN

 ,

where thehi j are Gaussian distributed, and the symmetry properties ofH depend on certain
symmetries of the quantum system. The main interest focuses on the distribution of the
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4 Avoided Crossing of Lyapunov Exponents

level (or eigenvalue) spacingsδE, or their normalized versionss= δE/〈δE〉 . For randomly
chosen energy levels (or diagonal random matrices) the normalized spacings are distributed
according to the Poisson distribution, which has the probability density

ρ(s) = e−s. (4.4)

For nonintegrable quantum systems (or nondiagonal random matrices), however, the spac-
ings are distributed according to the so-called Wigner distribution, whose exact form de-
pends on the symmetries of the system. For time reversal invariant systems with integer
total spin (or real symmetric random matrices) the Gaussian orthogonal ensemble applies.
In this case the probability density has the form

ρ(s) =
π

2
se−πs2/4 . (4.5)

While small spacings are possible in the Poisson distribution, they are avoided in the Wigner
distribution. In the last two decades it has been discovered that the avoidance of small energy
level spacings is a manifestation of quantum chaos (see, e.g., Refs. [54, 99]).

Estimating the probability density from a given set of samples is no easy task. Espe-
cially when the number of samples is small, it is much easier to estimate the cumulative
distribution function (CDF)

Φs(z) = Prob(s≤ z) =
∫ z

0
ρ(s)ds.

The CDF of the Poisson distribution can easily be calculated from the probability den-
sity (4.4),

Φs(z) = 1−e−z,

and for the Wigner distribution (Gaussian orthogonal ensemble) we calculate from the den-
sity (4.5)

Φs(z) = 1−e−πz2/4 .

For very smallz we can expand the exponentials and obtain in first orderΦs(z) ∼ z for the
Poisson distribution andΦs(z) ∼ z2 for the Wigner distribution. The simplest way to esti-
mateΦs(z) from a set of samples{zn}, n∈ {1, . . . ,N}, is to sort the samples by increasing
magnitude (z1≤ z2≤ ·· · ≤ zN) and to useΦs(zn) = n/(N +1) as the desired estimate, pos-
sibly in connection with interpolation (see, e.g., Ref. [41]). This method is used throughout
this chapter.
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4.1 Lyapunov Exponents and Energy Levels

4.1.3 Distribution of Lyapunov Exponent Spacings

Now we demonstrate that the consequence of the Lyapunov exponent repulsion is a particu-
lar statistics of Lyapunov exponent spacings in disordered systems of the type (4.1) or (4.3).
We performed the numerical experiment with different kinds of coupled maps as follows.
First, we fixed the system sizeN and the expectation valueε0 of the coupling constant.
Then, for each randomly chosen set of parameters (we used uniformly distributed param-
etersKi ∈ [7,10] for the standard maps,ai ∈ [0.2,0.3] for the skew Bernoulli maps, and
di ∈ [7.5,8.5] for the Ikeda maps) and coupling constantε (exponentially distributed ac-
cording to the probability densityρ(ε) = exp(−ε/ε0)/ε0 with expectation valueε0 = 10−5

for the standard and skew Bernoulli maps,ε0 = 10−4 for the Ikeda maps), we determinedN
Lyapunov exponents, which corresponds toN−1 spacings∆i = λi − λi+1. These spacings
are considered asN−1 samples of a random distribution (for the standard and Ikeda maps
only the positive Lyapunov exponents are considered). Performing calculations for many
sets of parametersKi (or ai , or di) andε, we obtain a representative statistics for the Lya-
punov exponent spacings, see Fig. 4.2 where the distribution functionΦ∆ (z) = Prob(∆ ≤ z)
is shown.

Examining Fig. 4.2 we see that the distribution of spacings of coupled maps has a very
strong depletion for smallz, not only compared to the Poisson distributionΦ ∼ z (which
occurs in the absence of coupling), but also compared to the Wigner distribution for the
Gaussian orthogonal ensemble of random matrices, for whichΦ ∼ z2 (see Sec. 4.1.2).
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Figure 4.2: Numerically estimated cumulative distribution functionsΦ
∆̃
(z) for the normalized (in

such a way that the mean spacing is 1) Lyapunov exponent spacings∆̃ of different systems (Stan-
dard and Bernoulli maps with average coupling parameterε0 = 10−5, Ikeda maps withε0 = 10−4)
with different types of coupling (uncpd.: uncoupled, NN: nearest neighbour coupling, glob.: global
coupling).
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Figure 4.3: Cumulative distribution functions of Fig. 4.2 in scaled coordinates, cf. Eq. (4.8).

To resolve this strong depletion we present the same data in Fig. 4.3 in scaled coor-
dinates. The scaling is motivated by our theory (see Sec. 4.2 below) and it shows that the
distribution function is exponentially small for small spacings:Φ∆ (z) ∼ exp(−1/z). Note
also that although the distribution functions are qualitatively similar for different systems,
they do not collapse onto a single curve. This is an indication for the nonuniversality of the
Lyapunov exponent spacing distribution.

4.1.4 Relation to Random Matrix Theory

As is clear from Eq. (4.2), the problem we consider can be formulated as a problem of
random matrix theory (with the usual modelling of chaotic fluctuations with random ones,
see Sec. 2.4). Namely, we are interested in the eigenvalues of infinite products of random
matrices, having both quenched (time-independent) disorder and dynamic (time-dependent)
noise. The quenched randomness comes from the distribution of the parameters in the dis-
ordered ensemble, e.g., from the distribution of parametersKi of the standard maps. The
dynamic noise comes from fluctuations due to the chaotic evolution (e.g., in the standard
map the local JacobianJ(t) depends on the chaotic variablesI andθ ).

To be more specific, we consider a system ofN globally coupled one-dimensional maps
as given by Eq. (4.3). If we replace the local derivativesf ′i (ui(t)) by stochastic variables
exp(Λi + ξi(t)), whereΛi is the Lyapunov exponent of the single mapfi andξi(t) accounts
for the fluctuations of the local expansion rates, the Lyapunov exponents of the system of
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coupled maps are related to the eigenvalues of the matrix product

t−1

∏
τ=0


(1− ε)eΛ1+ξ1(t) ε

N−1eΛ2+ξ2(t) · · · ε

N−1eΛN+ξN(t)

ε

N−1eΛ1+ξ1(t) (1− ε)eΛ2+ξ2(t) · · · ε

N−1eΛN+ξN(t)

...
...

...
...

ε

N−1eΛ1+ξ1(t) ε

N−1eΛ2+ξ2(t) · · · (1− ε)eΛN+ξN(t)

 .

Here, the parametersε, Λi , and the properties of the stochastic variablesξi represent the
quenched disorder, whereas the dynamic noise is given by the time-dependent values of
the stochastic variablesξi(t). We again stress that the eigenvalues of the matrix product are
already influenced by very small absolute values of the off-diagonal elements (i.e., very
small values ofε), which is not the case for the eigenvalues of a a single matrix.

The two limiting cases, when our problem can be reduced to standard ones, are clear.
In the case when the quenched disorder is absent (or if we consider just one realization of
parameters of the interacting chaotic systems), we have a standard problem of the calcu-
lation of Lyapunov exponents for a product of random matrices [25]. Another well-known
situation appears if the dynamic noise is absent (ξ(t) = 0): in this case all the matrices of the
product are equal and the problem reduces to the calculation of the eigenvalues of this one
matrix (see Sec. 2.1.2). This problem has been widely discussed, recently mainly in the con-
text of quantum chaos (see, e.g., Ref. [53]). For chaotic systems the fluctuations can vanish
only in exceptional cases (e.g., for the skew Bernoulli map this happens for the symmetric
situationai = 1/2 only; for the standard map in the chaotic state and for the Ikeda map the
fluctuations are always finite). Another limiting case is that of uncoupled systems (ε = 0):
here we have a product of diagonal matrices with both quenched and dynamic randomness,
and the Lyapunov exponents simply follow the statistics of the quenched disorder.

4.2 Theoretical Approach

4.2.1 Hyperbolic Approximation of Coupling Sensitivity

Similar to the case of quantum-mechanical systems (see, e.g., Ref. [99]), the essential qual-
itative and quantitative characteristics of the Lyapunov exponent repulsion can be acquired
from the consideration of two coupled dissipative chaotic systems. We demonstrate this with
the following numerical experiment: we calculate the Lyapunov exponents for two coupled
maps of Fig. 4.1, switching off the interaction with other systems. The results for two cross-
ings are shown as dashed lines in Fig. 4.1. One can see that the behaviour of the Lyapunov
exponents remains at least qualitatively the same.

Daido [26] has first shown that two coupled identical chaotic systems experience a sin-
gular repulsion of the Lyapunov exponents:∆ ∼ | lnε|−1, where∆ is the difference between
the Lyapunov exponents andε is the coupling parameter (coupling sensitivity of chaos). In
Ch. 3 a general expression for the coupling dependence of the first and second Lyapunov
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exponents of two coupled systems has been derived by means of a stochastic model. From
Eqs. (3.10) and (3.16) we obtain the following expression for the difference∆ between the
Lyapunov exponents of two coupled systems,

∆(|l | ,ε,σ) = ε

K1−|l |(ε/σ
2)+K1+|l |(ε/σ

2)
K|l |(ε/σ

2)
, (4.6)

whereσ
2 is the variance of the finite-time Lyapunov exponent,l = δΛ/2σ

2 is proportional
to the differenceδΛ = Λ1−Λ2 of the “bare” (i.e., without coupling) Lyapunov exponents
of the interacting systems, andK are the modified Bessel functions [1]. Although Eq. (4.6)
was obtained in the continuous-time Langevin approximation where the fluctuations of the
Lyapunov exponents are modelled by Gaussian white noise processes (thus discarding all
temporal correlations), it very well describes the coupled standard maps (Fig. 4.4) as well
as other chaotic systems [113]. Because expression (4.6) is rather inconvenient for further
analysis, we use a hyperbolic approximation for it,

∆
2≈ (δΛ)2 +

(
2σ

2

ln(ε/σ
2)

)2

. (4.7)

The first term on the r.h.s. corresponds to the limitδΛ →∞, while the second term is based
on an expansion of Eq. (4.6) forδΛ = 0 and smallε/σ

2 (see Eq. (3.12)). From Fig. 4.4 one
can see that this approximation is rather good.

Using (4.7) we can show that in a disordered system the probability to observe tiny val-
ues of∆ is exponentially small. It is clear that only small values ofδΛ andε can give small
spacings∆ . If we assume thatδΛ andε are independent random numbers with constant den-
sities near zero, then the distribution functionΦ∆ (z) = Prob(∆ ≤ z) can be approximated by
the integral over the areaA(z) = {(δΛ ,ε) : (δΛ)2 +[2σ

2/ ln(ε/σ
2)]2≤ z2}, leading to

Φ∆ (z)∼
∫ ∫

A(z)
d(δΛ)dε

= 2σ
2
∫ z

−z
exp

(
− 2σ

2√
z2− (δΛ)2

)
d(δΛ)

= 2σ
2z
∫

π/2

−π/2
exp

(
− 2σ

2

zcosα

)
cosα dα ,

where we have substitutedδΛ = zsinα in the last step. For 2σ2/z� 1 only the region
aroundα = 0 contributes, such that we can use the approximations 1/cosα ≈ 1+ α

2/2 in
the exponent and cosα ≈ 1 in the integrand. Integrating over(−∞,∞) (the contribution of
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Figure 4.4: Dependence of the Lyapunov exponent difference∆ on the differenceδΛ between
the “bare” Lyapunov exponents for two coupled standard maps with coupling parameterε = 10−5:
comparison of numerical results (circles) with the analytical expression (Eq. (4.6) with numerically
calculated values forσ2, solid line) and the hyperbolic approximation (Eq. (4.7), dashed line). The
dotted line depicts the Lyapunov exponent difference without coupling,∆ = |δΛ |.

the tails is negligible) gives the exponential depletion at small spacings,

Φ∆ (z)∼ 2σ
2zexp

(
−2σ

2

z

)∫ ∞

−∞
exp

(
−2σ

2
α

2

z

)
dα

∼ 2
√

π z3/2exp

(
−2σ

2

z

)
. (4.8)

The numerically calculated cumulative distribution functions are in conformity with this
result, as can be seen from Fig. 4.3.

The theoretical analysis above is, strictly speaking, restricted to the case of two inter-
acting chaotic systems. Nevertheless, we expect that it works at least qualitatively for large
ensembles as well, because we have seen that the Lyapunov exponent repulsion is a “local”
event, where only the two chaotic subsystems whose Lyapunov exponents are close to each
other are involved (recall the dashed lines in Fig. 4.1).

4.2.2 Distribution Functions for Special Cases

For just two coupled systems and given distributions of the parameters the exact form
of the CDF can be calculated for certain limiting cases. First we consider two uncou-
pled systems (ε = 0) with Lyapunov exponentsΛ1,2 independently chosen from the uni-
form distribution on a real interval of lengthL. The Lyapunov exponent spacing is simply
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4 Avoided Crossing of Lyapunov Exponents

∆ = |δΛ |= |Λ1−Λ2|, and we can calculate the CDF by direct integration,

Φ
0
∆
(z) =

2z
L

[
1− z

2L

]
. (4.9)

For smallzwe have in first orderΦ0
∆
(z)∼ z, a linear increase as for the Poisson distribution.

Now we couple the two systems with a fixed coupling parameterε and choose the
Lyapunov exponentsΛ1,2 from the same uniform distribution as before. We assume that the
varianceσ

2 does not vary much, such that we can consider it as a constant parameter. We
can calculate the new CDF from Eq. (4.9) by replacingzby the inverse function|δΛ |(∆) of
the hyperbolic approximation (4.7),

Φ
1
∆
(z) =

2
√

z2− [2σ
2/ |ln(ε/σ

2)|]2
L

−
z2− [2σ

2/
∣∣ln(ε/σ

2)
∣∣]2

L2 . (4.10)

For largez we haveΦ
1
∆
(z)≈ Φ

0
∆
(z).

In the other limit we now considerδΛ = 0 andε distributed according to the exponen-
tial distribution with expectation valueε0. If we again assume that the varianceσ

2 can be
considered as constant, we can calculate the CDF by substituting the inverse functionε(∆)
of the hyperbolic approximation (4.7) (withδΛ = 0) in the CDFΦε(z) = 1−exp(−z/ε0) of

0.00 0.05 0.10
z

0.0

0.5

1.0

Φ
∆(z

)

Figure 4.5: Cumulative distribution functions (see text)Φ
0
∆
(z) (thin solid line), Φ

1
∆
(z) (dashed

line), andΦ
2
∆
(z) (dot-dashed line) for parameter valuesL = 0.11, σ

2 = 0.113, andε0 = 10−5. Also
shown is the numerically estimated CDF for two coupled skew Bernoulli maps with parametersai

randomly chosen from a uniform distribution in[0.2,0.3] andε randomly chosen from an exponential
distribution with expectation valueε0 = 10−5 (5000 spacings). Note that the spacings∆ are not
normalized (in contrast to Fig. 4.2).
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the exponential distribution,

Φ
2
∆
(z) = 1−exp

(
−σ

2

ε0
exp

(
−2σ

2

z

))
. (4.11)

For 2σ
2/z� 1 the second exponential is small. Expanding the first exponential, we obtain

in first order the exponential depletion (see Eq. (4.8))

Φ
2
∆
(z)≈ σ

2

ε0
exp

(
−2σ

2

z

)
.

In Fig. 4.5 the CDFsΦ0,1,2
∆

(z) are shown for parameter values that apply to skew
Bernoulli maps withai ∈ [0.2,0.3] (see Sec. 2.1.3). The comparison with the numerically
estimated CDF for two coupled skew Bernoulli maps shows thatΦ

1
∆
(z) andΦ

2
∆
(z) give rea-

sonable approximations for large and small values ofz, respectively. The numerically esti-
mated CDF for uncoupled (ε = 0) skew Bernoulli maps perfectly follows the approximation
Φ

0
∆
(z).

4.3 Summary and Perspectives

Concluding, we have characterized numerically and theoretically the statistics of the Lya-
punov exponents in disordered chaotic systems. Its main feature is the exponential deple-
tion of the distribution function at small spacings between the exponents. This follows di-
rectly from the effect of coupling sensitivity of chaos, according to which the repulsion
between the Lyapunov exponents is extremely strong. This repulsion manifests itself also in
the avoided crossing of Lyapunov exponents, considered as dependent on a parameter. We
have demonstrated that the effects of level repulsion and avoided crossing are observed for
chaotic systems of different nature: Hamiltonian and dissipative ones. Also the coupling can
be of different form; in particular, qualitatively similar patterns of avoided Lyapunov expo-
nent crossings and of the Lyapunov exponent spacing distribution function are observed for
global and nearest-neighbour couplings in a lattice.

Our framework of consideration was motivated by the analogy to the problem of level
statistics in quantum chaos and complex quantum systems [54, 99, 53]. Qualitatively, the
behaviour of Lyapunov exponents is quite similar to that of energy levels in quantum chaos.
The main difference is that for disordered chaotic dynamical systems we have two sources
of randomness: one quenched due to the disorder and one dynamic due to the chaotic fluc-
tuations. Thus, in contrast to the problem of the distribution of the eigenvalues of a single
random matrix, we face the problem of the distribution of the eigenvalues of a product of
random matrices. There are two limiting cases when these two problems are equivalent. One
is the case without coupling, where the Lyapunov exponents remain independent random
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4 Avoided Crossing of Lyapunov Exponents

numbers and obey the Poisson distribution. The other one is the case of vanishing fluctua-
tions of the local Lyapunov exponents (no dynamic randomness); here we have one random
matrix whose eigenvalues give the Lyapunov exponents.

The problem we studied here should not be confused with the dependence of the Lya-
punov exponents of integrable Hamiltonian systems on a small perturbation that destroys
integrability. For those systems, which can also be related to products of random matrices,
a power-law behaviour of the Lyapunov exponents has been found [13, 85]. In our case,
however, the subsystems are already nonintegrable without coupling (ε = 0).

Concerning an experimental verification of our results, the same problems as for the
coupling sensitivity of chaos are encountered, i.e., it is very difficult to measure the Lya-
punov exponents of an experimental system directly. Therefore one has to look for indirect
effects on measurable quantities. A possible candidate is the electrical conductivity in quasi-
one-dimensional disordered solids, which depends on the Lyapunov exponents in a nontriv-
ial way via the Landauer formula [70]. Further research, however, is needed to understand
possible consequences of the avoided crossing of Lyapunov exponents on the conductivity
in such systems.
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5 Synchronization of Extended Systems

Spatially extended dyamical systems have been introduced in Ch. 2. They typically exhibit
local nonlinear dynamics as well as spatial coupling. The latter often consists of local diffu-
sive coupling, but long-range or global couplings are also possible. In this chapter, however,
we will limit ourselves to local coupling.

Here we consider two spatially extended systems that are additionally coupled to each
other in a bidirectional way as schematically shown in Fig. 5.1. Two different coupling
parameters apply. The local coupling within a single extended system is described by the
parameterε. For continuous-space systems (partial differential equations) this is typically
the diffusion constant. The coupling between the two extended systems is described by the
parameterγ. Synchronization between the two extended systems occurs in dependence on
γ for a fixed value ofε.

There are several works showing the possibility of synchronization of specific spatially
extended systems with different coupling schemes [5, 69, 86, 62, 16, 63, 37]. This chapter,
however, is concerned with the general nature of the transition to synchronization, i.e., the
dependence of the synchronization error on the coupling strength.

After an overview of the general framework and our stochastic model, first numerical
results for the synchronization of coupled map lattices are presented that indicate the exis-
tence of two different types of the synchronization transition. These two types of transition
are then studied in detail by means of numerical simulations. Finally, the introduction of a
discrete growth model allows an approximate numerical determination of the critical expo-
nents.

2

u  (x,t)

u  (x,t)

ε

ε

γ
1

Figure 5.1: A sketch of two coupled spatially extended systems, e.g. coupled map lattices. Besides
the local dynamics at each lattice site, there is interaction between neighbouring sites within one
system (coupling parameterε) as well as interaction between corresponding sites of the two systems
(coupling parameterγ).
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5 Synchronization of Extended Systems

5.1 General Framework

5.1.1 Coupled Spatially Extended Systems

A spatially extended system is typically given either as a coupled map lattice (CML) or as
a partial differential equation (PDE), see Sec. 2.2. Although our numerical simulations are
limited to CMLs, the general synchronization mechanism is the same for PDEs.

A typical model for bidirectionally coupled PDEs is given by

∂u1(x, t)
∂t

= f (u1(x, t))+ ε∆u1(x, t)+ γC[u2(x, t)−u1(x, t)] ,

∂u2(x, t)
∂t

= f (u2(x, t))+ ε∆u2(x, t)+ γC[u1(x, t)−u2(x, t)] ,

(5.1)

whereu1,2 = (u(1)
1,2, . . . ,u

(d)
1,2)T ∈ Rd are the state vectors,t ∈ R is the continuous time vari-

able,x∈ [0,L) is the continuous space variable,L ∈ R+ is the system length,ε is the dif-
fusion constant (the Laplacian∆ acts componentwise),γ is the coupling parameter, and
C ∈ Rd×d is the coupling matrix (see also Secs. 2.2 and 2.3). Periodic boundary conditions
ui(x, t) = ui(x+L, t) are assumed.

For studying synchronization, the difference

w(x, t) = u1(x, t)−u2(x, t)

plays a crucial role. We use the linear expansion off (u2) aroundu1 to obtain (with the
JacobianJ of f )

f (u1)− f (u2) = J(u1)(u1−u2)+O(‖u1−u2‖2) .

For a small perturbationw(x, t) of the synchronized state we then obtain in first order

∂w(x, t)
∂t

= [J(u1(x, t))−2γC]w(x, t)+ ε∆w(x, t) . (5.2)

Note thatw is used for the actual differenceu1−u2 (that can be of the order of theu1,2)
as well as for a small perturbation of the synchronized state in approximate models of the
perturbation dynamics.

In the case of CMLs, the spatial variablex ∈ {0, . . . ,L−1}, the system lengthL ∈ N,
and the timet ∈ Z are discretized. The discrete Laplacian in one spatial dimension reads

∆u(x, t) = u(x−1, t)−2u(x, t)+u(x+1, t) .

For simplicity, we use the same symbolsx, t,∆ for both continuous and discrete systems.

54



5.1 General Framework

The typical model for scalar state variablesu1,2(x, t) is given by

ũ1(x, t) = f (u1(x, t))+ ε∆ f (u1(x, t)) ,
u1(x, t +1) = ũ1(x, t)+ γ[ũ2(x, t)− ũ1(x, t)] ,

ũ2(x, t) = f (u2(x, t))+ ε∆ f (u2(x, t)) ,
u2(x, t +1) = ũ2(x, t)+ γ[ũ1(x, t)− ũ2(x, t)] ,

(5.3)

where againε is the diffusion constant,γ is the coupling parameter, and periodic bound-
ary conditionsui(x, t) = ui(x+ L, t) are assumed. The discrete Laplacian acts on thef (ui)
to ensure that the variablesui are mapped to the interval which the map is acting on (see
Sec. 2.2). For the same reason the coupling between the two CMLs is applied to the inter-
mediate state variables ˜ui . For a small perturbationw(x, t) of the synchronized state we now
obtain in first order

w̃(x, t) = f ′(u1(x, t))w(x, t)+ ε∆[ f ′(u1(x, t))w(x, t)] ,
w(x, t +1) = (1−2γ)w̃(x, t) ,

(5.4)

where the second equation is exact.
Similar considerations can be made in the case of unidirectional coupling, i.e., an au-

tonomous systemu1(x, t) driving a response systemu2(x, t) (see Sec. 2.3). For coupled
PDEs we then obtain

∂w(x, t)
∂t

= [J(u1(x, t))− γC]w(x, t)+ ε∆w(x, t) ,

whereas for coupled CMLs we find

w̃(x, t) = f ′(u1(x, t))w(x, t)+ ε∆[ f ′(u1(x, t))w(x, t)] ,
w(x, t +1) = (1− γ)w̃(x, t) .

Comparing these results with Eqs. (5.2) and (5.4), we see that only the prefactor ofγ

changes, which is confirmed by numerical simulations. In the following we will only con-
sider bidirectionally coupled systems. One should keep in mind, however, that the general
framework of the synchronization transition also applies to unidirectionally coupled sys-
tems.

5.1.2 Stochastic Model

We now introduce a stochastic PDE model for the synchronization error of both continuous
and discrete spatially extended systems (i.e., for both PDEs and CMLs). To this end, we
model the dynamics of the differencew(x, t) by adding a cubic nonlinearity to the linear
terms in Eq. (5.2) and replacing the chaotic derivatives off (u1(x, t)) by a stochastic process
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5 Synchronization of Extended Systems

ξ(x, t) (see also Sec. 2.4). Furthermore, we only follow the perturbation in the direction
of largest growth and therefore use a scalar variablew(x, t) (in contrast to the perturbation
vector in Eq. (5.2)). We then end up with the stochastic PDE [91, 93]

∂w(x, t)
∂t

=
{

c(γ)+ ξ(x, t)− p|w(x, t)|2
}

w(x, t)+ ε∆w(x, t) , (5.5)

which is the multiplicative noise equation (2.17) with an additional nonlinear term−p|w|2w
that ensures saturation of|w| if p> 0. This accounts for the restriction that the synchroniza-
tion error|w|must stay of the order of the state variablesu1,2. The functionc(γ) is connected
with the transverse Lyapunov exponent (see Eq. (5.7) below). In analogy with the situation
for coupled low-dimensional systems (see Sec. 2.3) we write

c(γ) = c0 + ln(1−2γ)

in the case of coupled CMLs and
c(γ) = c0−2γ

in the case of coupled PDEs. The constantc0 is connected with the Lyapunov exponent of
a single (uncoupled) extended system (see Eq. (5.8) below). The Gaussian random process
ξ(x, t) satisfies

〈ξ(x, t)〉= 0, 〈ξ(x, t)ξ(x′, t ′)〉= 2σ
2
δ(x−x′)δ(t− t ′) .

The variance 2σ2 is connected with the magnitude of the fluctuations of local multipliers
of the single map. The fieldw(x, t) stays positive fort > 0 if w(x,0)> 0 for all x. We shall
consider Eq. (5.5) as our general model although we will see below that it is not valid for
certain CMLs, in particular those consisting of discontinuous maps. By means of the Hopf-
Cole transformationh(x, t) = ln |w(x, t)|, Eq. (5.5) is transformed into (see also Sec. 2.4.2)

∂h(x, t)
∂t

= c(γ)+ ε∆h(x, t)+ ε[∇h(x, t)]2− pe2h(x,t) + ξ(x, t) , (5.6)

which is the Kardar-Parisi-Zhang (KPZ) equation [66] for a growing and roughening inter-
face with an additional exponential term which (forp> 0) preventsh(x, t) from growing
towards infinity (thus playing the role of a soft upper wall in the context of a growing inter-
face).

In Fig. 5.2(a) a snapshot of the synchronization errorw = u1−u2 of coupled tent map
CMLs at a fixed time is shown. Sinceγ < γc, no overall synchronization is observed. It is
obvious, however, that the synchronization error is highly localized. Plotting|w| in logarith-
mic coordinates reveals the connection with the roughening interface described by the KPZ
equation, see Fig. 5.2(b). Similar observations have been made for the Lyapunov vectors
of spatially extended systems [91, 93]. It should be noted, however, that Fig. 5.2 shows the
behaviour of the actual synchronization error, not its linear approximation.
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Figure 5.2: (a) Snapshot of the synchronization errorw = u1− u2 for coupled tent map CMLs
(L = 1024) with a coupling parameterγ = 0.175 slightly below the criticalγc. (b) Plotting|w| in log-
arithmic coordinates gives the profile corresponding to the roughening interface. The spatial profiles
of the state variablesu1,2 look qualitatively the same as the profile of a single tent map CML shown
in Fig. 2.2.

Synchronization is observed if〈|w|〉x (t)→ 0, which is equivalent to〈h〉x (t)→ −∞.
In this case the saturating exponential term in Eq. (5.6) can be neglected and we end up
with the usual KPZ equation. The average interface velocity gives the transverse Lyapunov
exponent [93],

λ⊥ = c(γ)+ ε

〈
[∇h(x, t)]2

〉
x,t , (5.7)

where the average is over space and time after some transient phase. In the uncoupled case,
γ = 0, we obtain the Lyapunov exponent of the extended system,Λext (which in general
cannot be calculated from the Lyapunov exponentΛ of the local dynamical systemf and
thus has to be estimated numerically). Therefore we can write Eq. (5.7) as

λ⊥ = Λext+ ln(1−2γ)

in the case of coupled CMLs and
λ⊥ = Λext−2γ

in the case of coupled PDEs. These equations determine the constantc0 introduced above,

c0 = Λext+ ε

〈
[∇h(x, t)]2

〉
x,t . (5.8)

Settingλ⊥ = 0, we obtain the linear critical coupling parameter

γc,lin =
1
2

(
1−e−Λext

)
(5.9)

in the case of coupled CMLs and

γc,lin =
1
2

Λext (5.10)
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in the case of coupled PDEs.
At this point a remark on finite-size effects is necessary. In Ref. [93] it has been shown

that for long enough averaging the finite-size dependence of the Lyapunov exponent of an
extended system is

Λext(L)−Λext(∞)∼ L−1 . (5.11)

This allows one to obtain an estimate of the thermodynamic limit valueΛ(∞) by extrap-
olation. Eq. (5.11) corresponds to the finite-size scaling of the average surface velocity of
the KPZ equation [71]. There are also scaling laws for the finite-time dependence of the
Lyapunov exponent prior to saturation [93, 71].

From the finite-size dependence ofΛext it follows that alsoλ⊥ andγc,lin are subject to
finite-size effects. Using the relation (5.11) forΛext(L) in the synchronization condition (5.9)
for coupled CMLs, we obtain (with a constantb)

γc,lin(L)≈ 1
2

[
1−e−Λext(∞)−b/L

]
≈ 1

2

[
1− (1−b/L)e−Λext(∞)

]
≈ γc,lin(∞)+

b
2L

e−Λext(∞) .

For the finite-size dependence of the critical coupling parameter it follows

γc,lin(L)− γc,lin(∞)∼ L−1 , (5.12)

which is also obtained from the synchronization condition (5.10) for coupled PDEs. The
validity of the results (5.9), (5.11), and (5.12) for coupled CMLs is checked in Secs. 5.2.1
and 5.3.1 below by means of numerical simulations.

5.1.3 Critical Exponents and Universality Classes

In the following, we are interested in the synchronization transition of chaotic extended
systems. We will show that it resembles a continuous phase transition (see, e.g., Ref. [14]),
where the coupling strengthγ and the averaged absolute difference〈|w|〉 x,t (averaged over
space and time after some transient phase) play the roles of the control and the order param-
eter, respectively. Without coupling (γ = 0) we have two individual systems. Starting from
different initial conditions, we have〈|w|〉 x,t > 0. In the case of coupled CMLs we immedi-
ately see from Eqs. (5.3) that forγ = 1/2 the systems synchronize (u1(x, t) = u2(x, t)) after
one time step.

Our tasks will be to find the critical coupling strengthγc such that

〈|w|〉 x,t

{
> 0 if γ < γc ,
= 0 if γ > γc ,
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5.1 General Framework

and to characterize the transition for different systems, i.e. to find the appropriate univer-
sality classes (see, e.g., Ref. [14]). For the latter task, the standard way to proceed is to
compute some of the critical exponents. Of interest in our case are1

〈|w|〉x,t ∼ (γc− γ)β for γ . γc ,

Lc∼ (γc− γ)ν⊥ for γ . γc ,

Tc∼ (γc− γ)ν‖ for γ . γc ,

〈|w|〉x (t)∼ t−δ for γ = γc ,

whereLc andTc are the correlation length and time, respectively. For the computation of
the exponentsβ , ν⊥, andν‖ an accurate knowledge of the critical coupling parameterγc is
required. Therefore, we will make use of the last relation to determineγc as the value ofγ
which the best power-law scaling is obtained for.

In Sec. 5.2.2 below it will be argued that the synchronization transition is in the directed
percolation (DP) universality class for CMLs consisting of discontinuous maps. In that con-
text it will be useful to consider the densityρ of unsynchronized sites (corresponding to the
density of active sites in DP), which in the spatially discrete case is defined as

ρ(t) =
card{x : |w(x, t)|> wth}

L

with some (small) thresholdwth. The scaling relations then read [49]

〈ρ〉t ∼ (γc− γ)β for γ . γc ,

ρ(t)∼ t−δ for γ = γc .

It is not a priori clear that the exponents are the same for|w| and ρ; arguments will be
given in Sec. 5.4.2 below. A further scaling variable in the context of DP is the first passage
time τ, defined as the first time〈|w|〉x (t) (or alternativelyρ(t)) becomes smaller than some
threshold. At criticality,τ scales with the system sizeL according to [101]

τ ∼ Lz for γ = γc ,

giving another way to estimateγc. This scaling relation is not useful for systems withγc

depending on the system sizeL (as CMLs consisting of continuous maps, see below).
The critical exponents are not independent of each other. In particular, the scaling re-

lationsδ = β/ν‖ andν‖ = zν⊥ hold [61]. The values of the critical exponents of a given
system can be used to decide which universality class it belongs to. In view of the following
results, we mention two universality classes.

1We denote the critical exponents by the symbols that are typically used in the context of directed percolation,
see, e.g., Ref. [61]
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Multipicative Noise Equation

The first model (that applies to CMLs consisting of continuous maps, see Sec. 5.2.1 below)
is the multiplicative noise equation (5.5). It can be transformed into the Kardar-Parisi-Zhang
(KPZ) equation plus a nonlinear term, Eq. (5.6); we will therefore denote this type of tran-
sition as “KPZ-like”. While the critical exponents [9]

ν⊥ = 1, z= 3/2

of the original KPZ equation in one spatial dimension are known exactly, this is not the case
for the additional critical exponents (β ,ν‖,δ ) of the multiplicative noise equation. Recent
estimates obtained by TU et al. from a direct numerical integration of the multiplicative
noise equation in one spatial dimension are [107]

β = 1.70±0.05, ν⊥ = 1.03±0.05, δ = 1.10±0.05, z= 1.53±0.07.

The results forzandν⊥ are consistent with the exact values of the KPZ equation. By scaling
arguments the relationν⊥ = 1/(2z−2) has been shown [107]. Although MUÑOZ and HWA

reported a valueβ = 1.50±0.15 in a later work [82] (see also Ref. [40]), the estimate of TU

et al. seems to rely on more accurate data and is reproduced by our simulations in Sec. 5.3.1
below.

Directed Percolation

The second model (that applies to CMLs consisting of discontinuous maps) is directed
percolation (DP, see, e.g., Ref. [48]). We give a brief description of site DP. In 1+ 1 (one
spatial and one temporal) dimensions consider a square lattice that is rotated by 45◦. In
the following, the vertical (horizontal) direction represents space (time). Each site of the
lattice can either be active or passive. We start with a few active sites that are randomly
placed along a vertical line (corresponding to a spatial pattern at timet = 0). At every time
step, each of the upper and lower right neighbouring sites of an active site is activated with a
probabilityp that plays the role of the control parameter. There exists a critical valuepc such
that the process dies out forp< pc and survives forp> pc. A continuous phase transition
is found if the fraction of active sites is used as the order parameter. Directed percolation
is considered to be a general model for fluctuating extended systems with absorbing states.
The passive state is absorbing in the sense that a site cannot be activated if both its upper
and lower left neighbouring sites are passive.

Although the critical exponents are not known exactly even in one spatial dimension,
there exist very accurate estimates [61],

β = 0.276486±0.000008, ν⊥ = 1.096854±0.000004,

δ = 0.159464±0.000006, z= 1.580745±0.000010.
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At the critical point a finite-size scaling relation is known [101] that in the language of the
synchronization transition reads

〈|w|〉x (t)∼ L−β/ν⊥g(t/Lz) . (5.13)

There also exists a field-theoretic description of DP similar to the multiplicative noise equa-
tion (5.5) introduced above (withw> 0), but with a quadratic nonlinearity and a multiplica-
tive noise term proportional to

√
w instead ofw [48]. Applications of DP include models of

epidemics and chemical reactions [48].

5.1.4 Previous Results

The stochastic model for the synchronization error and its connection with the KPZ equation
was suggested by PIKOVSKY and KURTHS [91]. They did not, however, include a nonlinear
saturating term.

GRASSBERGERshowed by means of numerical simulations and heuristic arguments
that the synchronization transition of stochastically coupled cellular automata (i.e., systems
with discrete state variables) is in the DP universality class [49]. He further argued that
the synchronization of extended systems with continuous state variables (such as CMLs)
generically corresponds to the KPZ equation with a nonlinear saturating term (see also
Ref. [48]).

BAGNOLI et al. studied unidirectionally coupled CMLs with an all-or-nothing type of
coupling [8]: at each time step, pairs of state variablesu1(x, t) andu2(x, t) are equalized
with a probabilityp. With p as the control parameter, a DP transition of the synchronization
error is found.

Finally BARONI et al. studied CMLs that are not directly coupled to each other, but
driven by the same realization of an additive noise processξ(x, t) [10, 11]. From the results
of numerical simulations they concluded that the transition is KPZ-like for CMLs consisting
of continuous maps (such as tent or logistic maps), but DP-like for CMLs consisting of
discontinuous maps (such as Bernoulli maps). The DP-like transition was also found in the
case of continuous maps with a very strong nonlinearity.

5.2 Two Types of Synchronization Transition

5.2.1 Continuous and Discontinuous Maps

At this point we present first numerical results for different CMLs of moderate length (L =
1024) to illustrate that there are two different kinds of the synchronization transition. More
exact numerical results and estimates of the critical exponents can be found in Sec. 5.3
below. We study CMLs consisting of skew Bernoulli maps (see also Sec. 2.1.3),

f : [0,1]→ [0,1] , u 7→
{

u/a if u≤ a,
(u−a)/(1−a) if u> a,

(5.14)
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Figure 5.3: Synchronization transition for CMLs consisting ofL = 1024 tent (a) and Bernoulli (b)
maps, respectively, with parametera = 1/2. The results shown are averages over 10 different initial
conditions and 50000 iterations (after a transient of 50000 iterations).

skew tent maps,

f : [0,1]→ [0,1] , u 7→
{

u/a if u≤ a,
(1−u)/(1−a) if u> a.

(5.15)

and logistic maps,
f : [0,1]→ [0,1] , u 7→ au(1−u) . (5.16)

The skew tent and Bernoulli maps depend on a parametera∈ (0,1); for a = 1/2 we obtain
the usual tent map and Bernoulli shift, respectively. The Lyapunov exponent of the single
map can be calculated analytically (see Sec. 2.1.3),

Λ =−alna− (1−a) ln(1−a).

For the logistic map,a ∈ (0,4]. For a = 4, the map can be transformed into the tent map
with a = 1/2; the Lyapunov exponent is therefore given byΛ = ln2.

In Fig. 5.3 the averaged absolute difference〈|w|〉x,t is plotted as a function of the cou-
pling parameterγ for CMLs consisting ofL = 1024 tent and Bernoulli maps, respectively.
All the maps of a CML have the same parameter valuea = 1/2. Throughout this chapter,
“democratic” coupling (ε = 1/3) is applied if not stated otherwise. Obviously, the transition
is of different form for the two examples, with exponentsβ > 1 for the tent map CMLs and
β < 1 for the Bernoulli map CMLs. A transition of the type shown in Fig. 5.3(a) is also
found for skew tent (a 6= 1/2) and logistic maps, while a transition of the type shown in
Fig. 5.3(b) is also found for skew Bernoulli (a 6= 1/2) maps.

In Tab. 5.1 results for the Lyapunov exponents and critical coupling parameters for
CMLs consisting of the maps described above are shown. Apart from the values for the
single-map Lyapunov exponentΛ , these results are based on numerical simulations. Recall
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Map a Λ Λext γc,lin γc

Tent 1/2 ln2≈ 0.6931 0.4340 0.1760 0.17605±0.00005
1/3 ln3− (2/3) ln2≈ 0.6365 0.3644 0.1527 0.1527±0.0003

Logistic 4 ln2≈ 0.6931 0.3809 0.1584 0.1584±0.0001
Bernoulli 1/2 ln2≈ 0.6931 0.6931 0.250 0.2875±0.0001

1/3 ln3− (2/3) ln2≈ 0.6365 0.6670 0.2430 0.280±0.0005

Table 5.1: Results for example maps with parametersa: single-map Lyapunov exponentΛ (ana-
lytical), Lyapunov exponent of the CMLΛext (numerical), linear critical coupling parameterγc,lin

(Eq. (5.9)), actual critical coupling parameterγc (numerical), all for system lenthL = 1024.

that they will in general depend on the system lengthL (see Sec. 5.1.2). The values for
the actual critical coupling parameterγc are not obtained from the data shown in Fig. 5.3.
Instead, those values ofγ are chosen which the best scaling〈|w|〉x (t)∼ t−δ is found for (see
also Figs. 5.6 and 5.8 below).

It is obvious thatγc = γc,lin for the continuous skew tent and logistic maps, while
γc > γc,lin for the discontinuous skew Bernoulli maps. This is in accordance with obser-
vations by BARONI et al. for the synchronization of CMLs driven by the same realization
of an additive noise process [10, 11]. In particular, it has been shown in Ref. [10] that for
stochastic synchronization of CMLs consisting of discontinuous maps the critical valueγc

coincides with the value ofγ at which the velocityvF of nonlinear information propagation
becomes zero (see Sec. 2.2 for a definition ofvF ). This is reproduced by our calculations for
coupled Bernoulli map CMLs as can be seen in Fig. 5.4(b). For tent CMLs,vF as well asλ⊥
become zero atγ = γc,lin (see Fig. 5.4(a)). In Fig. 5.4(a) it is also obvious that the transverse
Lyapunov exponentλ⊥ is proportional toγc− γ in the vicinity of γc.
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Figure 5.4: The transverse Lyapunov exponentλ⊥ (denoted byλT in the figures, filled circles) and
velocity of nonlinear information propagationvF (open circles) versus the coupling parameterγ for
CMLs consisting ofL = 1024 tent (a) and Bernoulli (b) maps, respectively, with parametersa= 1/2.
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5 Synchronization of Extended Systems

5.2.2 Spatiotemporal Dynamics

Because of the multiplicative nature of the linear perturbation dynamics (see Eqs. (5.2),
(5.4), and (5.5)), the synchronization error decreases exponentially such that the synchro-
nization is never perfect. This means that forγ ≈ γc nearly synchronized sites can easily
desynchronize due to fluctuations. In other words, the synchronized state is not absorbing
in the sense of DP. While these considerations hold in the case of CMLs consisting of contin-
uous maps, the linear approximation is not adequate for CMLs consisting of discontinuous
maps. There the nonlinear mechanism of information propagation inhibits synchronization
even if the transverse Lyapunov exponentλ⊥ is clearly negative. Since this mechanism is
associated with finite perturbations of the synchronized state, however, already synchro-
nized sites are not expected to desynchronize by themselves: small fluctuations are damped
becauseλ⊥ is clearly negative.

In Fig. 5.5 the spatiotemporal evolution of the synchronization error is plotted for val-
ues of the coupling parameterγ slightly larger than the criticalγc. As can be seen, there
are desynchronization events in fully synchronized regions in the case of tent map CMLs
(Fig. 5.5(a)), while this is not the case for Bernoulli map CMLs (Fig. 5.5(b)). For the lat-
ter, desynchronization of already synchronized sites is only possible due to the influence of
neighbouring unsynchronized sites. From the different synchronization mechanisms we can
guess the corresponding types of transition.
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Figure 5.5: Space-time plots of the synchronization of coupled CMLs with coupling parameters
γ slightly larger than the critical valuesγc. A black dot corresponds to an unsynchronized and a
white dot to a synchronized site, respectively (thresholdwth = 10−8). (a) Tent maps,γ = 0.18; (b)
Bernoulli maps,γ = 0.295. In both casesa= 1/2 andL = 1024, random initial conditions foru1(x,0)
andu2(x,0), coupling switched on after some transient evolution of the uncoupled CMLs.
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• For CMLs consisting of continuous maps (more exactly for CMLs whose stability is
determined by linear mechanisms) the transition is ruled by the linear perturbation
dynamics and is therefore expected to be KPZ-like (see Sec. 5.1.2).

• For CMLs consisting of discontinuous maps (more exactly for CMLs whose sta-
bility is determined by nonlinear mechanisms, see the remarks on stable chaos in
Sec. 2.2), however,γc > γc,lin and the synchronized state is absorbing forγ ≈ γc (see
also Ref. [11]): sinceλ⊥ < 0 for γ . γc, there are no local desynchronization events
in already synchronized regions. Since the velocityvF of nonlinear information prop-
agation is positive, however, desynchronization can occur by means of “diffusion” of
the local differencew(x, t) to neighbouring, already synchronized sites. Writing “1”
for an unsynchronized and “0” for a synchronized site, we can set up a simple discrete
model whose dynamics are given by the rules

1
p1→ 0, 01

p2→ 11, 10
p2→ 11, 000 6→ 010,

with transition ratesp1 andp2 for local synchronization and error diffusion, respec-
tively. At the critical coupling parameterγc the velocityvF vanishes. SincevF does
not depend on the system length (it describes the propagation of initially localized
perturbations),γc also does not depend onL. Concluding, the transition is expected to
be DP-like.

In the following sections we will confirm these expectations by numerical results.

5.3 Numerical Results for Coupled Map Lattices

5.3.1 Continuous Maps

We first consider CMLs consisting of continuous maps, in particular tent maps with pa-
rametera = 1/2. As mentioned before, the critical coupling parameter is obtained from the
scaling law〈|w|〉x (t)∼ t−δ . In Fig. 5.6 the time dependence of〈|w|〉x is shown for several
values ofγ around 0.176. Best scaling is found forγc = 0.17605. Strong fluctuations near the
critical point, long transients, and finite-size effects inhibit a direct estimation of the critical
exponent. From Fig. 5.6 it can be seen, however, that the numerical results are consistent
with the exponentδ = 1.19 that is found for the discrete single step model introduced in
Sec. 5.4.1 below.

The scaling behaviour〈|w|〉x,t ∼ (γc− γ)β of the data from Fig. 5.3 is not good enough
to allow checking the valueβ = 1.699 estimated in Sec. 5.4.1 below. It is well-known that
the estimation of the exponentβ is difficult due to long transients [49]. A larger system size,
longer simulation times, and averages over a larger number of initial conditions would be
needed.
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Figure 5.6: Coupled tent map CMLs (a = 1/2, L = 1024): time depedence of the space-averaged
absolute difference〈|w|〉x (t) for coupling parametersγ ∈ {0.1759,0.1760,0.17605,0.1761,0.1762}
(upper to lower solid lines) in doubly-logarithmic coordinates. The best scaling∼ t−δ is observed
for γc = 0.17605. The dashed line has a slope−1.19 as found in Sec. 5.4.1. The numerical results
are averages over 1000 to 10000 initial conditions. The decreasing absolute slope at larget indicates
saturation due to finite-size effects.

Finally, we have checked the predictions for the finite-size dependence∼ L−1 of the
Lyapunov exponentΛext of the extended system and the critical coupling parameterγc. We
numerically calculatedΛext for CMLs of lengthsL ∈ {32,64,128,256,512,1024} (using
the 0-norm, see App. A.1). The critical coupling parameter obtained from a scaling analysis
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Figure 5.7: Coupled tent map CMLs (a= 1/2,L∈{32,64,128,256,512,1024}): finite-size scaling
of the Lyapunov exponent,Λext(L) (filled circles, left axis), and the critical coupling parameter,γc(L)
(open circles, right axis). The straigt lines are linear fits.
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as shown in Fig. 5.6 coincided for allL with the linear estimateγc,lin , see Eq. (5.9) and
Tab. 5.1. In Fig. 5.7 the scaling∼ L−1 is shown.

5.3.2 Discontinuous Maps

Now we consider CMLs consisting of discontinuous maps, in particular Bernoulli maps
with parametera = 1/2. The critical coupling parameter, which is larger than the linear
prediction (5.9), is again obtained from the scaling law〈|w|〉x (t) ∼ t−δ . From Fig. 5.8 the
critical coupling parameterγc = 0.2875 is found for a CML of lengthL = 1024. The same
value ofγc is also found for other system lengths (see the finite-size scaling results below).
We conclude that the critical coupling parameter does not depend on the system length in
the case of CMLs consisting of discontinuous maps.

In Sec. 5.2.2 it was argued that the synchronization transition is in the directed perco-
lation (DP) universality class for CMLs consisting of discontinuous maps. From Fig. 5.8
we see that the numerical results are consistent with the DP valueδ = 0.159 [61] for the
critical exponent. Further numerical evidence for the DP nature of the synchronization tran-
sition is given by the validity of the finite-size scaling relation (5.13), which can be seen
from Fig. 5.9. There the rescaling with the DP exponentsβ/ν⊥ = 0.252 andz= 1.581 [61]
results in a very good collapse of the different curves onto the single scaling function.
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Figure 5.8: Coupled Bernoulli map CMLs (a = 1/2, L = 1024): time depen-
dence of the space-averaged absolute difference〈|w|〉x (t) for coupling parameters
γ ∈ {0.2873,0.2874,0.2875,0.2876,0.2877} (upper to lower solid lines) in doubly-logarithmic
coordinates. The best scaling∼ t−δ is observed forγc = 0.2875. The dashed line has a slope−0.159
as expected for DP. The numerical results are averages over 1000 initial conditions.
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Figure 5.9: Finite-size scaling for Bernoulli map CMLs witha = 1/2 and coupling parameter
γ = 0.2875. The time dependence of the averaged absolute difference〈|w|〉x (t) is plotted in unscaled
(a) and and scaled (b) coordinates for system lengthsL ∈ {32,64,128,256,512,1024} (lower to
upper lines). The DP valuesβ/ν⊥ = 0.252 andz= 1.581 [61] have been used for the exponents (νT

in the figure corresponds toν⊥ in the text).

5.4 Numerical Results for Discrete Growth Models

5.4.1 Single Step Model with Lower Wall

Since the synchronization transition has been shown to fall into the universality class of the
KPZ equation with a saturating term, it is promising to make use of discrete growth models
that are known to belong to the KPZ universality class. The saturation can be provided by
a growth-limiting wall. While a similar approach has already been used by MUÑOZ and
HWA in the context of the multiplicative noise equation [82], the specific single step model
we employ has the advantage that the free interface velocity (i.e., without a wall) is known
exactly, even for systems of finite length. Since this velocity corresponds to the transverse
Lyapunov exponent, the critical point is known exactly, which makes estimating critical
exponents much easier.

The original single step model has been introduced for studying roughening interfaces.
It is a restricted solid on solid (RSOS) model that has been shown to belong to the KPZ
universality class [76]. It can be related to the totally asymmetric exclusion process [72].
The basic model consists of of an even numberL of sites of integer heightHI (x, t) ∈ N0,
x ∈ {0, . . . ,L− 1}, t ∈ Z, with periodic boundary conditions,HI (x+ L, t) = HI (x, t). The
initial state (flat interface) is typically given by

HI (x,0) =
{

0 for evenx,
1 for oddx.

(5.17)

A timestep consists ofL substeps. At each substep, a site is chosen randomly. If this site is
a local minimum, its height is increased by two; otherwise nothing is done. In this way it is
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Figure 5.10: A sketch of the interface of the single step model (L = 16). At x = 8 a local minimum
is found and the local height of the interface is increased by two. The arrows indicate positive and
negative slopes between the sites.

ensured that the height difference between neighbouring sites is always one (see Fig. 5.10
for an illustration). If we denote a positive slope between interface sites by↑ and a negative
slope by↓, we have the simple transition rule

↓↑ → ↑↓ , ↑↓ 6→ ↓↑ .

The velocity of the saturated interface can be calculated as follows. Due to periodic
boundary conditions we always haveL/2 slopes↓ andL/2 slopes↑. After a transient phase
neighbouring slopes can be assumed to be uncorrelated. The probability to randomly find
a slope↓ at sitex is (L/2)/L. Given this, the probability to have a slope↑ at the right
neighbouring sitex+1 is (L/2)/(L−1). If such a combination is found, the average height
of the interface is increased by 2/L. Since a timestep consists ofL substeps, we obtain the
interface velocity [71]

VI = L
2
L

L/2
L

L/2
L−1

=
1
2

L
L−1

. (5.18)

In first order we obtain a finite-size correctionVI (L) ≈VI (∞) + 1/(2L) with VI (∞) = 1/2.
The scaling∼ L−1 is a general behaviour that can be explained by analytical arguments [71].
It corresponds to the finite-size scaling of the Lyapunov exponent of a spatially extended
system, see Sec. 5.1.2. Note that a flat interface (5.17) hasL/2 minima (instead of≈ L/4
after saturation) and therefore has a larger velocity than the one given by Eq. (5.18).

In Sec. 5.1.2 we have introduced a stochastic model for the dynamics of the synchroniza-
tion errorw(x, t). For the transformed variableh = ln |w| we obtain the KPZ equation (5.6)
with an additional local nonlinear term that preventsh(x, t) from growing beyond order
one. Synchronization in this model corresponds to an interfaceh moving towards−∞. In
our single step model, a hard wall at heightHW(t) moving with a velocityVW will play the
role of the saturating nonlinearity. We will now argue that a lower wall is appropriate. In
the modified KPZ equation (5.6) the(∇h)2 term has the positive prefactorε. From Eq. (5.7)
it thus follows that the interface velocity increases with the roughness of the interface. For
the single step model, however, the interface velocity is largest for a a flat interface. By
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changing the sign ofh (h̃ =−h) and dividing by−1, Eq. (5.6) is transformed into

∂h̃(x, t)
∂t

=−c(γ)+ ε∆h̃(x, t)− ε[∇h̃(x, t)]2 + pe−2h̃(x,t)− ξ(x, t) .

Now the prefactor of the(∇h̃)2 term is negative, in accordance with the single step model.
For h̃ synchronization corresponds to an interface moving towards+∞, and the saturating
term+pexp(−2h̃) corresponds to a soft lower wall preventingh̃ from becoming much less
than order one.

The connection between the single step model and the synchronization error now is as
follows. The variableh(x, t) = ln |w(x, t)| corresponds to the difference between the height
of the wall and the height of the interface at sitex,

h(x, t) ←→ HW(t)−HI (x, t) ,

〈|w(x, t)|〉 ←→
〈

eHW(t)−HI (x,t)
〉
.

The transverse Lyapunov exponent corresponds to the difference between the velocities of
the wall and the interface,

λ⊥ ←→ VW−VI .

In this way, synchronization corresponds to an interface moving faster than the wall (thus
escaping from the wall), whereas desynchronization corresponds to an interface moving
slower than the wall.

We now give a summary of the single step model with a hard lower wall and some
details of its implementation.

1. The system lengthL is chosen as a power of two, which allows using the logical “and”
operation to ensure periodic boundary conditions.

2. One unit timestep consists ofL substeps.

3. If not stated otherwise, the initial interface is flat (according to Eq. (5.17)) and at-
tached to the wall (HW(0) = 0).

4. A substep corresponds to first randomly selecting a sitex and checking if it is a local
minimum. If so, its height is increased by two:

if HI (x−1, t)> HI (x, t)< HI (x+1, t) then HI (x, t) 7→ HI (x, t)+2.

5. The free interface has the steady-state velocityVI = (1/2)L/(L−1) (see Eq. (5.18)).
When starting with a flat interface, the initial velocity is larger.
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6. The heightHW(t) of the wall is increased by one afterNW substeps, which results in
the wall velocityVW = L/NW. The heights of all sites that lie below the wall after this
step are immediately increased by two:

if HI (x, t)< HW(t) then HI (x, t) 7→ HI (x, t)+2.

7. The velocity differenceδV = VW−VI is equivalent to the transverse Lyapunov ex-
ponentλ⊥ and acts as the control parameter. The critical value is given byδV = 0.
If δV is positive, the wall moves faster than the interface and catches it. IfδV is
negative, the interface moves faster than the wall and escapes, which corresponds to
synchronization.

8. The velocity differenceδV (i.e., the control parameter) is varied by adjustingNW

according to

NW =
L

VI + δV
=

2(L−1)
1+2δV(1−1/L)

.

We now present numerical results for a system lengthL = 220 = 1,048,576 that
allow estimating the critical exponentsδ and β . In Fig. 5.11 the time dependence of
〈exp(HW−HI )〉x is shown for different values ofδV. A scaling∼ t−δ is clearly found
for δV = 0; a power law fit givesδ = 1.19. In Fig. 5.12 the transition〈exp(HW−HI )〉x,t
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Figure 5.11: 〈exp(HW−HI )〉x versus t for the single step model with system
length L = 1,048,576 and δV = −0.001 (squares), δV = 0 (filled circles), δV ∈
{0.0005,0.001, . . . ,0.004,0.005, . . . ,0.008} (lower to upper lines of diamonds). ForδV = 0,
we find 〈exp(HW−HI )〉x ∼ t−δ with δ = 1.19. The shown results are averages over five different
runs (with different sequences of random numbers), all starting with a flat interface attached to the
wall.

71



5 Synchronization of Extended Systems

0 0.005

δV

0

0.01
<

ex
p(

H
W

 −
 H

I)>
x,

t

0.001 0.01

δV

10
−4

10
−3

10
−2

<
ex

p(
H

W
 −

 H
I)>

x,
t

(a) (b)

Figure 5.12: (a) The transition of〈exp(HW−HI )〉x,t versusδV for L = 1,048,576. The data from
Fig. 5.11 have been time-averaged after saturation. (b) The same data in doubly-logarithmic coordi-
nates. The scaling behaviour〈exp(HW−HI )〉x,t ∼ δVβ is confirmed withβ = 1.699.

(time-averaged after saturation) versusδV is shown for the unsynchronized phaseδV > 0.
A power law fit givesβ = 1.699.

While our estimate forβ is consistent with the result of TU et al. (see Sec. 5.1.3 and
Ref. [107]), our estimate forδ is slightly different. It is, however, consistent with our nu-
merical results for coupled tent map CMLs, as has been shown in Fig. 5.6.

5.4.2 Single Step Model with Attractive Lower Wall

We now want to modify the single step model introduced in the previous section in such
a way that it describes the synchronization transition in the case of CMLs consisting of
discontinuous maps (see Sec. 5.3.2). To this end, it is useful to have a look at a snapshot of
the profile of the synchronization errorw of Bernoulli map CMLs coupled with a parameter
γc,lin < γ < γc. In Fig. 5.13 we observe a localization ofw as in the case of coupled tent map
CMLs (see Fig. 5.2). In logarithmic coordinates, however, no typical KPZ-like interface is
observed. On the contrary, the interface sticks aroundw≈ 10−2 in some places while it has
very small values ofw in between.

To include this behaviour into the single step model, we make the wall attractive. This
is achieved by changing point 4 of the algorithm described in Sec. 5.4.1, which now reads

4’. A substep corresponds to first randomly selecting a sitex and checking if it is a local
minimum. If it is a minimum at the same height as the wall, its height is increased by
two with probability 1−q; if it is a minimum at a larger height, its height is increased
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Figure 5.13: (a) Snapshot of the synchronization errorw = u1− u2 for coupled Bernoulli map
CMLs (L = 1024) with a coupling parameterγ = 0.2865 slightly below the critical valueγc, but above
γc,lin . (b) Plotting|w| in logarithmic coordinates gives the profile corresponding to the roughening
interface. It does not, however, show typical KPZ-like properties (cp. Fig. 5.2).

by two with probability 1:

if HI (x−1, t)> HI (x, t)< HI (x+1, t) then

if HI (x, t)
{

= HW(t) then HI (x, t) 7→ HI (x, t)+2 with prob. 1−q,
> HW(t) then HI (x, t) 7→ HI (x, t)+2 with prob. 1.

For large enoughq we thus achieve that the interface stays attached to the wall even if the
interface velocity is larger than the wall velocity (VI > VW, i. e., δV < 0). The parameter
q measures the attractivity of the wall, the limiting cases are the single step model with a
nonattractive wall introduced in Sec. 5.4.1 (q = 0) and an interface that cannot escape from
the wall (q = 1).

As usual in the context of DP, we study the behaviour of the density of attached (or
unsynchronized) sites

ρ(t) =
card{x : HI (x, t) = HW(t)}

L
.

The densityρ(t) scales in the same way as〈|w|〉 : sinceVI >VW (or λ⊥ < 0) the interface at
a certain site stays either at the wall or moves far away from it (see also Fig. 5.13(b)). This
means that the contribution to〈|w|〉 of sites that are not attached to the wall is negligible.

In Fig. 5.14 numerical results for the temporal evolution ofρ(t) for L = 220 =
1,048,576,q = 0.7, and different values ofδV are shown. The critical velocity difference is
no longer known exactly but has to be estimated from the scaling behaviour. From Fig. 5.14
we find a valueδVc =−0.07035±0.00005 that is clearly less than zero. ForδVc < δV < 0
we have phase coexistence: a free (initially detached) interface moves away from the wall,
whereas an initially attached interface stays attached to the wall. The scaling∼ t−δ is con-
sistent with the exponentδ = 0.159 known for DP.
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Figure 5.14: Density ρ(t) of attached sites versust for the single step model with
system lengthL = 1,048,576, q = 0.7, and δV ∈ {−0.071,−0.0704} (squares), δV ∈
{−0.0703,−0.070,−0.0695, . . . ,−0.0655} (lower to upper lines of diamonds). From these results
we estimate the critical control parameter asδVc =−0.07035±0.00005. The dashed line shows the
scalingρ(t) ∼ t−δ with δ = 0.159 as expected for DP. The shown results are averages over one to
five different runs (with different sequences of random numbers), all starting with a flat interface
attached to the wall.

In Fig. 5.15 the scaling behaviour〈ρ〉t ∼ δVβ (time-averaged after saturation) is shown
for δV > δVc. A power law fit gives an exponentβ = 0.266 which is not too different from
the DP valueβ = 0.276. We stress that the critical velocity differenceδVc is only known

−0.07 −0.065

δV

0

0.1

0.2

<
ρ>

t

0.001 0.01
δV − δV

c

0.1

0.2

<
ρ>

t

(a) (b)

Figure 5.15: (a) The transition of〈ρ〉t versusδV−δVc (with δVc =−0.07035) forL = 1,048,576
andq = 0.7. The data from Fig. 5.14 have been time-averaged after saturation. (b) The same data in
doubly-logarithmic coordinates. The scaling behaviour〈ρ〉t ∼ δVβ is confirmed withβ = 0.266.
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approximately in this case such that the estimate ofβ cannot be expected to be very accurate.
We finally remark that an analysis of the finite-size scalingτ ∼ Lz of the first passage

time (after which the interface detaches from the wall) is difficult because the control param-
eterδV enters the model via the discrete numberNW ∈ N+ of substeps between successive
increments of the wall height (see point 8 of the algorithm in Sec. 5.4.1). For small values of
the system sizeL, the control parameter can therefore only be changed in rather large steps.
Even worse, for differentL the same value of the control parameter cannot be applied. The
highly fluctuating results indicate the validity of the scaling law (with the DP valuez= 1.58)
at the critical velocity differenceδVc. For large values ofL, the steps between different pos-
sible values of the control parameterδV are very small and do not pose problems; the first
passage time, however, becomes astronomically large.

5.5 Summary and Perspectives

In this chapter we have introduced a stochastic model for the synchronization error of cou-
pled extended dynamical systems. The stochastic partial differential equation is known
as the multiplicative noise equation and can be transformed into the Kardar-Parisi-Zhang
(KPZ) equation with an additional growth-limiting term.

We have shown that the multiplicative noise equation is the correct model for coupled
map lattices (CMLs) consisting of continuous maps (more exactly CMLs whose stability is
determined by linear mechanisms). The critical coupling parameter for these systems can
be calculated from the condition that the transverse Lyapunov exponent is zero. This criti-
cal coupling parameter shows a finite-size dependence∼ L−1. A discrete growth model has
been introduced (single step model with lower wall) which has a critical point that is known
exactly and allows efficient numerical computation of the critical exponents. Accurate val-
ues for the critical exponents of the multiplicative noise equation are still missing. The
single step model with a lower wall may be useful in this context. Our results for the critical
exponents should only be regarded as first estimates; large-scale simulations are needed to
obtain definitive values. Furthermore, the estimation of the critial exponentsν⊥ andν‖ for
the correlation length and time of the perturbation dynamics (see Sec. 5.1.3) remains to be
done.

For CMLs consisting of discontinuous maps (more exactly CMLs whose stability is
determined by nonlinear mechanisms) the multiplicative noise equation does not describe
the synchronization transition. Here the critical coupling parameter is given by the condi-
tion that the velocity of nonlinear information propagationvF becomes zero; at that point
the transverse Lyapunov exponent is already clearly negative. We have shown that the syn-
chronization transition for such systems is in the universality class of directed percolation
(DP), which can be understood from the observation that the synchronized state is absorb-
ing. For DP, the critical exponents are known with very high accuracy (although not ex-
actly). Our numerical results agree very well with these exponents. The single step model
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has been modified to describe this type of transition by making the wall attractive. This
modified single step model is also interesting in the context of nonequilibrium wetting tran-
sitions [56, 57]. The connection with previous models is currently under investigation [96].
Also of interest is the nature of the phase diagram (for the two phases attached/detached
interface) with the two control parametersδV andq: asq is varied between 0 and 1, the
type of transition changes from KPZ-like to DP-like. The question arises if the critical ex-
ponents change continuously or discontinuously in between; also this is a point of current
investigation [97].

The existence of two different mechanisms for the synchronization transition and the
observed universality classes (KPZ with growth-limiting term, DP) are in accordance with
results of BARONI et al. for CMLs that are not directly coupled to each other, but driven by
the same realization of an additive noise process [10, 11]. Recently a finite-size Lyapunov
exponent has been proposed to characterize the stability of dynamical systems with respect
to finite perturbations, which might be useful for calculating the critical coupling param-
eter of spatially extended systems that exhibit a DP-like synchronization transition [23].
One may argue, however, that CMLs consisting of discontinuous maps can be regarded as
unphysical. Although our numerical simulations have been limited to CMLs, from our theo-
retical description the typical synchronization transition of coupled partial differential equa-
tions can be expected to be KPZ-like (recall that so far stable chaos has not been observed
in PDEs). Furthermore, our considerations have been limited to one spatial dimension. Re-
sults for the multiplicative noise equation indicate similar transitions (with different critical
exponents) in two and three spatial dimensions [40]. In three spatial dimensions, however,
two diferent types of transition are observed in dependence on the noise strength [51, 40].

The main problems for an experimental verification of our theoretical and numerical
results are the requirements of long time series and an accurate measurement of the critical
coupling strength. Possible coupled chaotic systems that can be considered as extended in
one spatial dimension are:

• Semiconductor laser arrays [78] and broad area semiconductor lasers [32] that could
be coupled by injecting light from one system into the other one.

• External cavity semiconductor lasers [80] for which the time delay can be regarded as
a one-dimensional spatial extension [43, 44]. Also for these systems the coupling can
be realized via light injection [79, 2]. A similar, but simpler model system consists of
coupled Ikeda delay differential equations [60], see Sec. 3.4.2.

• Liquid crystals describable by the anisotropic Ginzburg-Landau equation [31]. In this
PDE model, different diffusion constants apply in different spatial directions.

At least the finite-size dependenceγc ∼ L−1 (whereL corresponds to the delay time in the
case of external cavity semiconductor lasers) should be observable in experiments.
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6 Conclusion

In this work different aspects of the perturbation dynamics of coupled chaotic systems have
been studied. As two central phenomena the coupling dependence of the Lyapunov expo-
nents of weakly coupled chaotic systems and the coupling dependence of the synchroniza-
tion error of strongly coupled spatially extended chaotic systems have been chosen. This
choice was motivated by the observed universality, which manifests itself in scaling laws
which are valid for a wide range of different systems. By replacing the chaotic fluctua-
tions in the linearized perturbation dynamics by stochastic processes, we were able to give
explanations for the observed universality and to obtain analytical or approximate results.

In the following, we discuss our main results. Finally, we report open questions and
future perspectives.

6.1 Discussion of Main Results

Coupling Sensitivity of Chaos

We have introduced a stochastic continuous-time model for the perturbation dynamics of
weakly coupled chaotic systems, which includes the key ingredients of exponential growth,
temporal fluctuations, and coupling (Ch. 3 and Refs. [113, 3, 114]). By means of the Fokker-
Planck equation we have been able to derive a general analytic expression for the coupling
dependence of the largest Lyapunov exponent. In contrast to previous models [29, 75, 22] it
is also valid for coupled nonidentical systems. As a special case for very small coupling and
identical Lyapunov exponents of the uncoupled systems, we have obtained as an approxima-
tion the 1/ ln |ε| dependence of the largest Lyapunov exponent known as coupling sensitivity
of chaos [26]. In agreement with previous observations [26], our results underline the ne-
cessity of fluctuations of the local multipliers (or finite-time Lyapunov exponents) for this
singular behaviour of the Lyapunov exponent. Analytical or approximate expressions have
also been obtained for the sum of Lyapunov exponents and for the generalized Lyapunov
exponents.

A comparison with results of numerical simulations for coupled maps, but also for
coupled high-dimensional delay differential equations, undermined the validity of our the-
oretical results, but also showed the limits of the stochastic approach. These limits are
reached when the implicit assumption of coupling-independence of the local multipliers
breaks down, i.e., for strong coupling and for nonsingular coupling dependence (e.g., for
the generalized Lyapunov exponents), or when long temporal correlations are present (e.g.,
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for strange nonchaotic attractors). Furthermore, our model is restricted to mapsf (u) whose
first derivativesf ′(u) have the same sign for allu. Numerical simulations, however, give
the 1/ ln |ε| dependence of the largest Lyapunov exponent also for general maps [26]; re-
cently a stochastic model similar to ours has been proposed for the perturbation dynamics
of weakly coupled map lattices, which includes the possibility of sign changes of the deriva-
tives f ′(u) [22]. Finally we have shown that our simple stochastic model allows a qualitative
understanding of the coupling sensitivity of chaos as a restricted random walk phenomenon.

Avoided Crossing of Lyapunov Exponents

As a consequence of the coupling sensitivity of chaos, we have found the new phenomenon
of avoided crossing of Lyapunov exponents in weakly coupled disordered chaotic systems
(Ch. 4 and Ref. [4]). Disorder in this context refers to differences between the parameters of
the coupled subsystems. The repulsion between Lyapunov exponents is qualitatively simi-
lar to the energy level repulsion in nonintegrable quantum systems [54], but quantitatively
much stronger. Indeed a relation to random matrix theory [77] can be drawn. In our problem,
however, the eigenvalues of products of random matrices are of interest, and we have two
sources of randomness: quenched disorder due to different subsystems and dynamic noise
due to chaotic fluctuations. Using the results obtained in the context of the coupling sensitiv-
ity of chaos (Ch. 3), we have derived the asymptotic expressionΦ∆ (z)∼ exp(−1/z) for the
distribution function of small spacings between the Lyapunov exponents, which agrees well
with results of numerical calculations for different systems (dissipative and Hamiltonian
ones) and different coupling schemes (nearest neighbour and global types).

Synchronization Transition of Spatially Extended Systems

Finally we have studied the dependence of the averaged difference between the states of
two strongly coupled spatially extended chaotic systems on the coupling strength (Ch. 5).
Inspired by the observation that this synchronization transition can be seen as a continu-
ous phase transition, our investigations were based upon a multiplicative noise PDE model
with a nonlinear saturation term, which has been proposed before as a model for the syn-
chronization transition [91, 48, 49] and also studied in other contexts [12, 51, 107, 82, 40].
By means of the Hopf-Cole transformation this model can be related to the Kardar-Parisi-
Zhang (KPZ) equation [9, 55]. We have shown that the critical coupling parameterγc can
be calculated from the Lyapunov exponentΛext of a single spatially extended system, and
thatγc inherits the finite-size scaling∼ L−1 from Λext [93]. Furthermore, we have added the
saturation mechanism to a discrete growth model (the single step model known to belong
to the KPZ universality class) by means of a hard wall pushing the interface from below.
The transverse Lyapunov exponent then corresponds to the difference between the wall and
interface velocities, while the synchronization error corresponds to the average height dif-
ference between the wall and the interface. This discrete model is computationally efficient,
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and its critical parameter is known exactly.
Numerical simulations for different coupled map lattices (CMLs) revealed the existence

of two types of the synchronization transition.

• For CMLs consisting of continuous maps, good agreement with the predictions of the
stochastic model has been found. In particular, the predicted value and the finite-size
scaling of the critical coupling parameterγc as well as the scaling〈|w|〉x ∼ t−δ of the
space-averaged synchronization error are reproduced, the latter in consistence with
the exponentδ = 1.19 estimated from the discrete growth model.

• For CMLs consisting of discontinuous maps, the numerical results do not agree with
the predictions of the stochastic model. Namely, the critical coupling parameter is
larger than expected, and the scaling〈|w|〉x ∼ t−δ shows an exponentδ < 1. This can
be explained by the dominance of a nonlinear mechanism of information flow, lead-
ing to an instability with respect to finite perturbations of linearly stable systems [95].
Due to the linear stability, the synchronized state is absorbing and the transition is in
the directed percolation (DP) universality class. This has been shown by the consis-
tence of the numerical results with the DP exponentδ = 0.159 and by a very good
data collapse of results for different system lengths according to a finite-size scaling
relation.

The existence of two different types of the synchronization transition is in agreement with
recent results for the synchronization of CMLs which are not directly coupled, but driven by
the same additive noise process [10, 11]. The lower wall in the discrete growth model can
be made attractive such that the model shows the DP transition. For this modified model,
however, the critical parameter is not known exactly anymore.

6.2 Open Questions and Perspectives

A main direction of further research should be the study of manifestations of our theoret-
ical results in physical systems. Our results concerning the synchronization transition of
spatially extended systems (Ch. 5) are directly applicable to coupled optical systems, such
as broad area semiconductor lasers [32], semiconductor laser arrays [78], or lasers with
time-delayed feedback [80], which can all be regarded as spatially one-dimensional. These
systems have been shown to provide spatiotemporal chaos, and they can easily be coupled
site by site via light injection. The experimentalist would have to cope with two problems.
First, the accurate adjustment and measurement of the coupling strength could pose diffi-
culties. Second, an accurate measurement of the synchronization error would be needed to
estimate the critical coupling strength and the critical exponents.

To directly observe the coupling dependence of the Lyapunov exponents (Chs. 3 and 4)
in experimental weakly coupled chaotic systems is expected to be difficult, although some
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methods exist to estimate at least the largest Lyapunov exponent from experimental time
series [65]. A more promising approach could be to look for indirect effects on measurable
quantities that depend on the Lyapunov exponents. The Lyapunov exponents of disordered
systems play a special role in this context, as they are connected with the localization length,
the electrical conductance, and correlation functions [25, 70]. Further theoretical research is
needed to investigate possible consequences of the coupling sensitivity of chaos and of the
avoided crossing of Lyapunov exponents. First results exist, however, for the localization
length in coupled one-dimensional disordered lattices [115].

On the theoretical side, the connection of the avoided crossing of Lyapunov exponents
with random matrix theory (Ch. 4) deserves further research. A starting point could be the
limit of vanishing dynamic noise (i.e., coupled maps with nonfluctuating local multipliers):
in that case the problem of calculating the eigenvalues of the product of random matrices
reduces to calculating the eigenvalues of a single random matrix.

Furthermore, several open questions exist in the context of the synchronization transi-
tion of spatially extended systems (Ch. 5). First, it would be interesting to check the va-
lidity of our results for coupled partial differential equations (PDEs). Second, an obvious
generalization is given by coupled systems of higher spatial dimension. Studies of the mul-
tiplicative noise PDE in three spatial dimensions predict two different types of transition
in dependence on the magnitude of fluctuations [51, 107, 40]. Third, accurate estimates of
the critical exponents for the multiplicative noise PDE are still needed. We think that the
discrete growth model (single step model with lower wall) could be a useful tool to nu-
merically obtain these estimates, since the critical point is known exactly for this model.
Fourth, the phase diagram of the modified discrete growth model (single step model with
attractive lower wall) is expected to be interesting in its own right. It is given by the location
and nature of the transition between an attached and a moving interface in the parameter
space that is spanned up by the attractivityq of the wall and the velocity differenceδV be-
tween the wall and the free interface. This phase diagram and its possible connection with
a nonequilibrium wetting model [56, 57] are currently under investigation [97].
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A Appendix

A.1 Numerical Calculation of Lyapunov Exponents

Lyapunov exponents are introduced in Ch. 2 as indicators for the stability properties of
dynamical systems. Here we describe the methods used in this work to numerically calculate
these exponents (see, e.g., Ref. [84]). A comparison of different methods for calculating
Lyapunov exponents can be found in Ref. [39].

A.1.1 Discrete Maps

To calculate allN Lyapunov exponents of anN-dimensional map of the form (2.2), we have
to follow the dynamics ofN perturbation vectorswi , i = 1, . . . ,N, which fort = 0 are linearly
independent and normalized to unit length. The largest Lyapunov exponent is then given by

λ1 = lim
t→∞

1
t

ln‖w(t)‖ , (A.1)

it does not depend on the norm. The sum of then largest Lyapunov exponents is given by

n

∑
i=1

λi = lim
t→∞

1
t

lnVn(t) , (A.2)

whereVn is the volume spanned up by the perturbation vectorsw1, . . . ,wn.
At this point we face two problems. First, the norm‖w(t)‖ grows or shrinks exponen-

tially if λ1 is greater or less than zero, respectively. So already for moderate values oft the
norm can either not be calculated due to numerical overflow, or is zero due to limited numer-
ical precision. In both cases,λ1 cannot be calculated from Eq. (A.1). Second, ifλ1 is positive
and some other perturbation vectorwi , i > 1, has a component in the direction ofw1, this
component grows with a larger exponential rate than the components in all other directions.
In this way the different perturbation vectors rapidly align in the direction of largest growth.
As a result the calculation of volumes spanned up by different vectors becomes impossible
due to limited numerical precision.

The remedy for these problems is reorthonormalization of the perturbation vectorswi

after not too long time intervals. The growth rate of the linear system is independent of the
length of the vectors, such that renormalization of the vectors is a valid way to overcome
the first problem. Reorthogonalizing the vectors ensures thatw1 points in the direction of
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largest growth,w2 points in the direction of second largest growth perpendicular tow1, and
so on. Furthermore, the volumes are now rectangular and we have

lnVn =
n

∑
i=1

ln‖wi‖ .

So we can subtract the expressions (A.2) for differentn to directly calculateλi ,

λi =
1

NortTort

Nort

∑
j=1

ln
∥∥wi(t j)

∥∥ ,
whereNort and Tort are the (large) number of and the (short) time interval between re-
orthonormalizations, andt j is the time of thej-th reorthonormalization. The reorthonor-
malization method used for the numerical calculations in this work is the modified Gram-
Schmidt algorithm, which is numerically more accurate than the classical Gram-Schmidt
algorithm [15]. Before the calculation of theλi starts, a sufficiently long transient phase
is necessary to ensure that the system is on its attractor. It should be kept in mind that in
practice one always calculates finite-time Lyapunov exponents.

A.1.2 Differential Equations

For anN-dimensional system of ordinary differential equations of the form (2.1) the algo-
rithm is essentially the same as for discrete maps. The numerical integration schemes used
in this work (Runge-Kutta, Bulirsch-Stoer [98]) calculateu(t) at discrete timest = tn. If
adaptive stepsize methods [98] are used, the intervals between differenttn are in general of
different length. Therefore also the intervals between reorthonormalizations will in general
be of different length. The Lyapunov exponents are calculated according to

λi =
1
T

Nort

∑
j=1

ln
∥∥wi(t j)

∥∥ ,
with the (long) integration timeT.

A.1.3 Spatially Extended Systems

The Lyapunov exponents of spatially extended systems are calculated in a similar way as
described above. The state and perturbation vectors are usually written asu(x, t) andw(x, t),
respectively, wherex is the space andt is the time variable, which can both be either discrete
or continuous. With the system lengthL, we havex∈ [0,L) in the spatially continuous and
x∈ {0,1, . . . ,L−1} in the spatially discrete case, respectively. Theq-norm (q∈N0) at time
t is given by

‖w‖q(t) =
[

1
L

∫ L

0
|w(x, t)|q dx

]1/q

,
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where the integral has to be replaced by a sum for spatially discrete systems. The limiting
cases are

‖w‖0(t) = exp

(
1
L

∫ L

0
ln |w(x, t)| dx

)
and

‖w‖∞ (t) = max
x
|w(x, t)| .

Although the Lyapunov exponents are norm-independent, the properties of the finite-time
Lyapunov exponents in general depend on the norm used in the calculations. In Ref. [93]
it has been shown that of the family ofq-norms only the 0-norm has the self-averaging
property that the magnitude of fluctuations of the finite-time Lyapunov exponents decreases
with increasing system length.

A.1.4 Generalized Lyapunov Exponents

Theq-th generalized Lyapunov exponent is defined as

L(q) = lim
t→∞

1
t

ln〈‖w(t)‖q〉 ,

where the average is over different trajectories of the system. This average has to be carried
out explicitly, which makes the numerical calculation of generalized Lyapunov exponents
much more difficult than the calculation of Lyapunov exponents. The standard approach
consists of first calculatingLm(q) by approximating (in the discrete-time case)

〈‖w(t)‖q〉 ≈ 1
m

m

∑
j=1

‖w(t + j)‖q

for different (small) values ofm. The value ofL(q) is then calculated by consideringLm(q)
as a function of 1/q and extrapolating to 1/q→ 0. Details can be found in Ref. [25].
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A.2 Stochastic Differential Equations

We briefly review some results for stochastic differential equations that are needed in this
work. The subject is treated in detail in Refs. [58, 38, 100, 109].

A.2.1 Langevin Equation

A differential equation with a stochastic driving term is called a Langevin equation. For a
one-dimensional stochastic variablex(t) it is given by (in Stratonovich form, see below)

dx(t) = f (x)dt +g(x)◦dW(t) ,

whereW(t) is a Wiener process (i.e., the displacement of a Brownian particle with starting
pointW(0) = 0). It has a Gaussian distribution characterized by

〈W(t)〉 = 0,
〈
W(t)W(t ′)

〉
= min(t, t ′) .

In general, the functionsf andg can also be time-dependent. In this work, we often write
Langevin equations in the intuitive form

dx(t)
dt

= f (x)+g(x)ξ(t) ,

whereξ(t) = dW(t)/dt is a Gaussian stochastic process with zero mean, unit variance, and
no temporal correlations,

〈ξ(t)〉 = 0,
〈

ξ(t)ξ(t ′)
〉

= δ(t− t ′) .

The simplest Langevin equation reads

dx(t) = dW(t) .

Its solution is given by

x(t) = x(0)+
∫ t

0
dW(t̃) = x(0)+W(t) ,

This simple example demonstrates that the variablex(t) depends onW(t). For the solution
of a multiplicative noise equation,

dx(t) = g(x)◦dW(t) ,

it is thus not clear how the integral in the solution

x(t) = x(0)+
∫ t

0
g(x(t̃))◦dW(t̃)
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shall be calculated. There is no definite answer to this question, one has to decide between
different interpretations of the Langevin equation. In the Stratonovich interpretation the
solution is given by

x(t) = x(0)+ lim
N→∞

N−1

∑
n=0

g

(
x(tn+1)+x(tn)

2

)
[W(tn+1)−W(tn)] with tn =

nt
N
.

For this choice the variablex(t) can be transformed by the usual rules of calculus, which is
not the case for other interpretations. One can also argue that the Stratonovich interpretation
is closest to physical processes (which are never exactlyδ -correlated).

In this work Langevin equations are used as models of chaotic processes. Since these
models are constructed to match the properties of the chaotic processes, we have to choose
one specific interpretation in advance. Throughout this work, the Stratonovich interpreta-
tion is used. The question of deciding between the Stratonovich and Itô interpretations in
stochastic modelling is treated in detail in Sec. 5.4.2 of Ref. [58].

A.2.2 Fokker-Planck Equation

Given a Langevin equation, one is usually not interested in individual trajectories. Instead
one often wants to calculate the moments〈xq〉 , which are in general time-dependent. All
information about the distribution ofx(t) can be obtained from the probability density func-
tion ρ(x, t). The temporal evolution ofρ(x, t) is decribed by the Fokker-Planck equation

∂ρ(x, t)
∂t

=− ∂
∂x

[ f (x)ρ(x, t)]+
1
2

∂
∂x

{
g(x)

∂
∂x

[g(x)ρ(x, t)]
}

=− ∂
∂x

{[
f (x)+

1
2

g(x)g′(x)
]

ρ(x, t)
}

+
1
2

∂2

∂x2

[
g2(x)ρ(x, t)

]
,

whereg′ = dg/dx. This equation can be considered as a continuity equation for the proba-
bility densityρ(x, t) and the probability flow

j(x, t) =
[

f (x)+
1
2

g(x)g′(x)
]

ρ(x, t)− 1
2

∂
∂x

[
g2(x)ρ(x, t)

]
.

Let x be defined on an interval with bordersa andb (a< b), which can be±∞. If there is
no probability flow across these borders, the stationary probability density is given by

ρs(x) =
N

g(x)
exp

(
2
∫ x

a

f (x̃)
g2(x̃)

dx̃

)
,

whereN is a normalization constant.
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A.2.3 Furutsu-Novikov Relation

At several points in this work it is necessary to calculate averages of the form〈ξ(t)F [ξ ]〉 ,
whereF [ξ ] is a functional ofξ(t) (e.g., an integral). For a Gaussian stochastic processξ(t)
with zero mean the Furutsu-Novikov relation provides a very convenient way to evaluate
averages of this kind [35, 83]. In one dimension the relation reads

〈ξ(t)F [ξ ]〉 =
∫ 〈

ξ(t)ξ(t ′)
〉 〈 δF [ξ ]

δξ(t ′)

〉
dt ′ ,

whereδF/δξ is the functional derivative, and the integral extends over the interval which
t ′ is defined on.

As an example which is of particular importance for this work we study

w[ξ ] = exp

(
Λt +

∫ t

0
ξ(t̃) dt̃

)
with a constantΛ and a Gaussian noise processξ(t) with

〈ξ(t)〉 = 0,
〈

ξ(t)ξ(t ′)
〉

= 2σ
2
δ(t− t ′) .

Using the chain rule, the functional derivative is calculated as

δw[ξ ]
δξ(t ′)

=

{
w[ξ ] if t ′ ∈ [0, t] ,
0 else.

The Furutsu-Novikov relation thus gives

〈ξ(t)w[ξ ]〉 =
∫ t

0
2σ

2
δ(t− t ′)〈w[ξ ]〉dt ′ = σ

2〈w[ξ ]〉

(note that only one half of theδ -distribution contributes to the integral). Applications can
be found in Secs. 2.4.1 and 3.2.4.
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Notation

t time (discrete or continuous)
x space (discrete or continuous)
u state vector with componentsu(i)

w perturbation vector, synchronization error
f nonlinear function
J Jacobian off
P product matrix∏J
PT transpose ofP

ε coupling parameter (between subsystems), diffusion constant
γ coupling parameter (between extended systems, Ch. 5)

γi eigenvalues
λi Lyapunov exponents
Λi Lyapunov exponents of uncoupled systems
λi(t) local (finite-time) Lyapunov exponents
2σ

2 variance of local Lyapunov exponentλ(1)
λ⊥ transverse Lyapunov exponent
L(q) generalized Lyapunov exponents

χ,ξ stochastic processes
2σ

2 variance of stochastic process
W(t) Wiener process
Prob(X) probability of eventX
ρ(s) probability density of stochastic variables
Φs(z) cumulative distribution function Prob(s≤ z)

ODE ordinary differential equation
PDE partial differential equation
CML coupled map lattice
CDF cumulative distribution function
KPZ Kardar-Parisi-Zhang
DP directed percolation
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