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Abstract

Subject of this work is the investigation of universal scaling laws which are observed in coupled
chaotic systems. Progress is made by replacing the chaotic fluctuations in the perturbation dynamics
by stochastic processes.

First, a continuous-time stochastic model for weakly coupled chaotic systems is introduced to
study the scaling of the Lyapunov exponents with the coupling strength (coupling sensitivity of
chaos). By means of the the Fokker-Planck equation scaling relations are derived, which are con-
firmed by results of numerical simulations.

Next, the new effect of avoided crossing of Lyapunov exponents of weakly coupled disordered
chaotic systems is described, which is qualitatively similar to the energy level repulsion in quantum
systems. Using the scaling relations obtained for the coupling sensitivity of chaos, an asymptotic
expression for the distribution function of small spacings between Lyapunov exponents is derived
and compared with results of numerical simulations.

Finally, the synchronization transition in strongly coupled spatially extended chaotic systems is
shown to resemble a continuous phase transition, with the coupling strength and the synchronization
error as control and order parameter, respectively. Using results of numerical simulations and theo-
retical considerations in terms of a multiplicative noise partial differential equation, the universality
classes of the observed two types of transition are determined (Kardar-Parisi-Zhang equation with
saturating term, directed percolation).

Kurzfassung

Gegenstand dieser Arbeit ist die Untersuchung universeller Skalengesetze, die in gekoppelten chao-
tischen Systemen beobachtet werden. Ergebnisse werden erzielt durch das Ersetzen der chaotischen
Fluktuationen in der Stérungsdynamik durch stochastische Prozesse.

Zunéachst wird ein zeitkontinuierliches stochastisches Modell fur schwach gekoppelte chaoti-
sche Systeme eingefiihrt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsstarke
(coupling sensitivity of chapzu untersuchen. Mit Hilfe der Fokker-Planck-Gleichung werden Ska-
lengesetze hergeleitet, die von Ergebnissen numerischer Simulationen bestatigt werden.

Anschliel3end wird der neuartige Effekt der vermiedenen Kreuzung von Lyapunov-Exponenten
schwach gekoppelter ungeordneter chaotischer Systeme beschrieben, der qualitativ der Absto3ung
zwischen Energieniveaus in Quantensystemen dhnelt. Unter Benutzung derdoupliag sensiti-
vity of chaoggewonnenen Skalengesetze wird ein asymptotischer Ausdruck fir die Verteilungsfunk-
tion kleiner Abstande zwischen Lyapunov-Exponenten hergeleitet und mit Ergebnissen numerischer
Simulationen verglichen.

Schlielich wird gezeigt, dass der Synchronisationstibergang in stark gekoppelten raumlich aus-
gedehnten chaotischen Systemen einem kontinuierlichen Phaseniibergang entspricht, mit der Kopp-
lungsstéarke und dem Synchronisationsfehler als Kontroll- beziehungsweise Ordnungsparameter. Un-
ter Benutzung von Ergebnissen numerischer Simulationen sowie theoretischen Uberlegungen an-
hand einer partiellen Differentialgleichung mit multiplikativem Rauschen werden die Universali-
tatsklassen der zwei beobachteten Ubergangsarten bestimmt (Kardar-Parisi-Zhang-Gleichung mit
Sattigungsterm, gerichtete Perkolation).
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The first questions are always to be asked, and the wisest
doctor is gravelled by the inquisitiveness of a child.

RALPH WALDO EMERSON Intellect, inEssayg1841).

1 Introduction

Natural systems that vary with time are mathematically described by dynamical systems,
which can be deterministic or stochastic. While linear deterministic dynamical systems are
well understood, their stochastic and nonlinear deterministic counterparts still provide many
challenges. One facet of nonlinear deterministic dynamical systems that has attracted much
interest since BINCARE's pioneering work in the 1890s is the possibility of chaotic so-
lutions [84]. Chaos in this sense is characterized by a sensitive dependence of the system
dynamics on the initial conditions. Many aspects of a dynamical system, including its stabil-
ity with respect to small perturbations, are characterized by the Lyapunov exponents. These
indicators that measure the exponential growth or decay of linearized perturbations play an
important role throughout this work. In the last five decades much progress in the investi-
gation of chaotic systems has been made with the aid of computer simulations. During the
last ten years the focus of interest has shifted from low- to high-dimensional dynamical sys-
tems, in particular to spatially extended systems that abound in nature and display a variety
of interesting phenomena, ranging from pattern formation to turbulence [17].

A very active field of research is the synchronization of coupled chaotic systems. The
effect of synchronization of periodic oscillators has already been studiedUmGENS in
the seventeenth century [94]. Synchronization of chaotic systems, however, refers to cou-
pled subsystems that are chaotic by themselves, but show a certain degree of correlation
between each other, e.g., have identical amplitudes at a given time. This counterintuitive ef-
fect has only been discovered in the 1980s byIBAKA and YAMADA [33, 110] as well as
Pikovsky [88], but is now reasonably well understood for low-dimensional systems [94].
The situation is again different for high-dimensional systems, as there are many open ques-
tions. One of them is the synchronization transition which is studied in this work.

For some phenomena in chaotic dynamics, universal scaling relations exist that are valid
for a wide range of different specific systems. A prominent example is the sequence of pe-
riod doubling bifurcations characterized by the universal Feigenbaum constant [84]. Two
further examples, that are studied in this work, are the scaling of the Lyapunov exponents
of weakly coupled chaotic systems and the scaling of the synchronization error of strongly
coupled spatially extended chaotic systems. For these phenomena the role of chaos is to pro-
vide temporal or spatiotemporal fluctuations in the linearized dynamics. It has been found



1 Introduction

that in several cases it is possible to model the chaotic fluctuations by random variables,
which explains the universality of the observed phenomena and often allows an analytic
treatment [25]. This approach is to some extent comparable with the methods of statistical
mechanics. At the moment, however, there exists no general formalism for the stochastic
modelling of chaotic fluctuations.

In this work we apply the method of stochastic modelling to coupled chaotic systems.
The remaining chapters are organized as follows.

In chapter 2 a brief review of dynamical systems and chaos is given. The main focus is
on concepts that are used in this work, i. e., Lyapunov exponents, spatially extended systems,
and synchronization. Furthermore, the idea of stochastic modelling of chaotic fluctuations
is reviewed and references to the literature of stochastic dynamics are given.

In chapter 3 we study the strong dependence of the Lyapunov exponents of weakly
coupled chaotic systems on the coupling strengtipd coined the notion “coupling sen-
sitivity of chaos” for this behaviour which he first observed in 1984 [26]. Although some
theoretical explanations of this effect have been given since, we gain further insight by using
a very simple stochastic model that includes the key ingredients of the dynamics: fluctua-
tions and coupling. We then compare the theoretical predictions of our model with results
of numerical simulations.

Chapter 4 is concerned with a consequence of the coupling sensitivity of chaos that we
call “avoided crossing of Lyapunov exponents”. This effect, which to our knowledge has
not been reported before, appears as a strong repulsion between the Lyapunov exponents of
weakly coupled disordered chaotic systems. This behaviour is qualitatively reminiscent of
the energy level repulsion in nonintegrable quantum systems and can be related to random
matrix theory [77]. Using the results of chapter 3, we derive an approximate distribution
function for the spacings between the Lyapunov exponents and compare it with results of
numerical simulations.

In chapter 5 we turn our attention to spatially extended dynamical systems and study
their synchronization properties. Results of numerical simulations indicate the existence of
two different types of the synchronization transition. In both cases we find a continuous
phase transition between the synchronized and the nonsynchronized state. By means of
stochastic models [91, 48], the universality classes of these transitions are determined via
the estimation of some of the critical exponents.

Chapter 6 gives a summary of our main results and shows directions for further research.
In addition, each of the chapters 3, 4, and 5 closes with a brief summary. The possible exper-
imental relevance of our theoretical results is discussed in some detail in these summaries.

Finally, the two appendices A.1 and A.2 review some basic methods for the numerical
calculation of Lyapunov exponents and for the treatment of stochastic differential equations.
On page 87 an overview of the notation used in this work can be found.
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This chapter first gives a brief review of some of the main concepts of nonlinear dynamics.
In view of the following results, particular attention is paid to the Lyapunov exponents as
a measure of the stability of dynamical systems. For more details and proofs the reader
is referred to Refs. [52, 84]. More specialized sections treat spatially extended dynamical
systems, synchronization phenomena, and stochastic models of chaotic systems.

2.1 Dynamical Systems

2.1.1 Differential Equations and Maps

A dynamical system describes the temporal evolution of the state of a system, which is
characterized by a number of variables. Typical examples are angles and velocities for me-
chanical systems or voltages and currents for electrical onesd Vhaables form a state
vectoru € M ¢ CY that describes the system. Each possible state of the system corresponds
to a point in thed-dimensional phase space, the temporal evolution of a state is described
by a trajectoryu(t) in this phase space. In a deterministic dynamical system the state of the
system unequivocally determines its future evolution. This means that trajectories cannot
cross each other. The temporal evolution is typically either described by a set of ordinary
differential equations (ODES) or by a discrete map acting on the state vector. There are,
however, other forms of description, e.g., delay differential equations or partial differential
equations.

In the case of ordinary differential equations we first note that it is sufficient to consider
sets of first order ODEs,

du(t)

q =), (2.1)
wheret € R is the continuous time arfd M — CY is a function that is in general nonlinear.
Equations including higher order derivatives or explicit time dependences can be trans-
formed into this form by adding further state variables. Given an initial condit{o, the
temporal evolution ofi(t) for t > 0 can in principle be calculated unequivocally, provided
thatf locally satisfies a Lipschitz condition [52].

If we look at the system at discrete time instants, we can describe the temporal evolution
by a map,

u(t+1) = f(u(t)), (2.2)
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wheret € Z is the discrete time anfl: M — M is a again a function that is in general
nonlinear. Given an initial condition(0), it is clear that the temporal evolution oft) for

t > 0 is determined unequivocally. A discrete map can be attributed to a continuous-time
dynamical system via the Poincaré surface of section (see, e.g., Ref. [84]).

2.1.2 Lyapunov Exponents

The asymptotic stability of a trajectory can be studied by linearizing the evolution equations.
A trajectoryu(t) is called asymptotically stable if there exists a phase space volume around
it such that trajectories’(t) in this volume approach(t) in the long time limit,

lim ||lu(t) —u'(t)[| = 0.

t—ow

We first limit our attention to differential equations of the form (2.1). We consider a
reference trajectory(t) and a second trajectory(t) +w(t), wherew(t) is a small pertur-
bation. By means of the Taylor expansion

f(u+w) =f(u)+J(u)w-+O(||w|?)

(whered is the Jacobian df) we can study the time evolution of the perturbation vector in
linear approximation,

Note that the Jacobiaih(u(t)) is in general time-dependent. If the reference trajectory con-
sists of a fixed pointy(t) = uo, its stability depends on the real parts of the eigenvajues
(i=1,...,d) of the constant Jacobiak{up):

< 0: asymptotically stable,
miax{Rey.} =0: marginally stable,
>0: unstable.
In the case of marginal stability one has to consider higher order terms in the Taylor expan-
sion off (u+w) to decide about the stability of the fixed point.

In the case of discrete maps of the form (2.2), we can also use the Taylor expansion of
f (u+w) and obtain in linear approximation

w(t+1) =J(u(t))w(t).

If the reference trajectory consists of a fixed paigt the stability again depends on the
eigenvalues; (i = 1,...,d) of the constant Jacobial{up). Here, however, the logarithms

1we write an equal sign here and understarig as a “linear perturbation”.
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of the absolute eigenvalues are of interest:

< 0: asymptotically stable,
miax{ln ln|} ¢ =0: marginally stable,
>0: unstable.

If the reference trajectory is not a fixed point, its stability is measured by the Lya-
punov exponents. We first concentrate on discrete maps of the form (2.2). Given the initial
conditionsug = u(0) andwg = w(0) (with ||wp|| = 1), we define the local (or finite-time)
Lyapunov exponents as

1 1 1
A(t,up) = T In||w(t)|| = T In||P(t,uo)wo| = > In(Wg PT (t,up)P(t, up)Wo),

where the upper indek denotes the transpose and

t-1
P(t,up) = [1J(u(z)).

The real nonnegative symmetric matRX P has real nonnegative eigenvalygs, uo) (i =

1,...,d) and eigenvectors which are orthogonal to each other. Chowgingthe direction

of the eigenvector corresponding to the eigenval(teup), we have

1 1
2i(t,ug) = > In(W{ % (t, uo)Wo) = > Iny(t,up) .

In the long-time limit we obtain the Lyapunov exponents
A= tlim Ai(t,uo)

which are according to Oseledec’s multiplicative ergodic theorem independeigt fof
almost allug (see, e. g., Ref. [52]). Due to ergodicity, we also obtain the Lyapunov exponents
by means of averaging their finite-time values with respect to the invariant measure of

A = (Ai(t,uo)) . (2.3)

We sort the Lyapunov exponents with decreasing magnitude, A, > --- > A4. A generic
perturbationwg will have components in the directions of all eigenvectors and thus rapidly
align in the direction of fastest growth. A numerical method for the calculation of Lyapunov
exponents is given in App. A.1.

In the case of differential equations of the form (2.1) Lyapunov exponents are defined
in nearly the same way. The only difference is tRé#t, up) has to be replaced b(t,up),
which is the matrix solution of the differential equation

dO(t,up)

S = 3(ut)0(t,uo)
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with the initial conditionO(0,up) = | (wherel is the unit matrix). For trajectories of
continuous-time systems one Lyapunov exponent is always zero (except for trajectories that
consist of single fixed points); this accounts for the phase space motion along the trajectory.

The concept of Lyapunov exponents is one of the most important tools to character-
ize dynamical systems. Although the Lyapunov exponents themselves have no physical
meaning, many physically relevant quantities, such as the correlation time and the entropy,
depend on them (see, e.g., Ref. [25]). Furthermore, the Lyapunov exponents are used to
classify dynamical systems with respect to their stability properties in the following way.
After a transient time a system typically settles on an attractor. Without going into math-
ematical details, an attractor can be seen as a set of phase space points that is approached
by all trajectories starting from a surrounding phase space volume (the basin of attraction).
The Lyapunov exponents are average quantities that describe the stretching and shrinking
of phase space volumes in different directions. For dissipative systems the sum of Lyapunov
exponents is negative, while it is zero for conservative systems. The Lyapunov exponents
provide a criterion to decide about the nature of an attractor. As chaos is characterized by
a sensitive dependence of the system behaviour on initial conditions, it can be associated
with a positive largest Lyapunov exponent For continuous-time systems we have the
following classification:

A1 < 0: attractive fixed point,
A1=0, 2 <0: attractive limit cycle,
A1 =X4=0: quasiperiodic attractor,
A1 >0: chaotic attractor.

Finally we remark that the Lyapunov exponents play a crucial role in the context of syn-
chronization, see Sec. 2.3 below.

The estimation of Lyapunov exponents from time series of experimental systems is very
difficult, although some methods exist for the estimation of at least the largest Lyapunov
exponent [65]. Therefore, the Lyapunov exponents are most useful for systems which math-
ematical models are known for.

2.1.3 Example: Skew Bernoulli and Skew Tent Maps

Simple examples which allow analytical calculations of Lyapunov exponents are given by
the one-dimensional skew Bernoulli map (see Fig. 2.1(a))

. u/a if u<a,
f:[0,1] — [0,1], UH{(u—a)/(l—a) ifus>a., (2.4)
and the skew tent map (see Fig. 2.1(b))
} u/a ifu<a,
f:[0,1 — [0,1], UH{(l—u)/(l—a) fusa (2.5)



2.2 Spatially Extended Dynamical Systems

(@) f(u) (b) fw

0 a 1Y 0 a 1Y

Figure 2.1: The skew Bernoulli (a) and skew tent (b) maps.

Both maps depend on a paramedet (0,1). Due to the uniform invariant measures of the
maps, the absolute derivatives are for both maps given by

\f’(u)\ _ 1l/a with probabilitya,
1/(1—a) with probability 1—a.

The Lyapunov exponent has the same value for both maps and is easily calculated by
averaging the one step (finite-time) Lyapunov exponent according to Eqg. (2.3),

A= (A(1,up)) = (In|f'(up)|) = —alna—(1—a)In(1-a).

The Lyapunov exponent is positive for all valuesaof (0,1) and has a maximum at=
1/2. The variance of the one step Lyapunov exponent can also be calculated,

2
26% = ([a(1,up) — %) =a(1—a) <In 11) .

—a

The variance is zero only f@= 1/2 and has maxima at~ 1/2+ 0.417.

2.2 Spatially Extended Dynamical Systems

Extended dynamical systems depend on both space and time. Typically they show local
dynamics and spatial coupling, often in the form of diffusion. Examples can be found in the
forms of fluids, semiconductors, broad-area lasers, chemical reactors, etc. There are several
approaches to describe turbulence by means of spatially extended dynamical systems [17].

Of the rich variety of phenomena that are observed in such systems, we mention space-
time intermittency, moving fronts, and self-organized spatial structures. By space-time
chaos a dynamical regime is denoted which is characterized by both chaotic time series
at each spatial site and irregular spatial profiles at a given time.
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The mathematical models that are closest to most physical extended systems are partial
differential equations (PDEs). Widely studied examples are reaction diffusion systems of
the form [17]

au(x,t)
ot

where the components of the state vectarRY are the concentrations of chemical species,

x € [0,L] denotes space (with the system lengtke R™), andt € R denotes time. The
nonlinear functiorf (u) describes the local chemical reaction, and the tAtnfwhere the
Laplacian acts componentwise) accounts for diffusion of molecules or atoms. Prominent
other PDEs are the complex Ginzburg-Landau equation for a complex state vafiabje

C and the Kuramoto-Sivashinsky equation for a real scalar state vatigbte € R, which
includes nonlinear and higher order spatial coupling [17].

Especially for numerical simulations other levels of description than PDEs can be more
appropriate. The first simplification of a PDE consists of the discretization of space, leading
to coupled oscillators. By discretizing time as well, one arrives at so-called coupled map
lattices (CMLs) [64]. In one spatial dimension a CML has the form

=f(u(xt))+eAu(xt), (2.6)

u(x,t+1) =f(u(xt))+elf (ux+1,t))—2f (u(x,t)) +f(u(x—1,t))], (2.7)

wherex € {0,...,L — 1} denotes space (with the system length N), t € Z denotes time,
u(x,t) € M c CYis the state vector at the spatial sitandf : M — M is a nonlinear function
describing the local dynamics. Often the local state vector is a real sgaléy € M C R.

Note that we first apply the mafpto u and then the coupling tb(u). This ensures that

the state variables stay in the interwdl. The coupling is a discrete diffusion operator.
Generalizations to higher spatial dimensions are straightforward; in this work, however, we

0.5|H

u(x.t)

0 I | I |
0 500 100C

X

Figure 2.2: Snapshot of the state variahlgx,t) of a tent map CML at a fixed timé (= 1024).
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limit ourselves to one spatial dimension. In Fig. 2.2 a snapshot of the state variakle
of a CML consisting oL = 1024 tent maps (i. e., skew tent maps (2.5) with 1/2)

f:[0,1 —[0,1], u~—1-2ju—1/2]

is shown as an example; to ensure translational invariance, periodic boundary conditions
u(x+L,t) = u(x,t) have been used. Most phenomena that are found in spatially extended
dynamical systems can also be found in CMLs. There are other forms of coupling than the
diffusive one used in Eg. (2.7). In Ch. 4, for instance, global coupling will be used.

Lyapunov exponents of spatially extended systems are calculated as described for low-
dimensional systems from the linearizations of Egs. (2.6) and (2.7), respectively. The growth
rates of perturbations = (Wb, ..., w@)T are calculated with respect to thenorm

1 /L d . 1/q
wilq (t) = [[/0 Z|W(J)(x,t)\q dx] ,
=

where the integral is replaced by a sum for spatially discrete systems. In spatially extended
dynamical systems there are two limits that have to be taken to calculate the Lyapunov ex-
ponent: the usual limit — c and the thermodynamic limit — c. The combination of

both limits, however, induces a problem: it is not a priori clear that the perturbation vec-
tor w remains normalizable. It turns out that the perturbation vector is highly localized at
small spatial regions [42, 24, 91], and that finite-size and finite-time scaling relations for
the Lyapunov exponent can be derived [93]. Moreover, the Lyapunov exponents of spatially
extended systems have been found to be norm-independent, but to exhibit self-averaging
with the system siz& only if the 0-norm is used [93] (see also App. A.1). In the ther-
modynamic limitL — o the normalized spectrum of Lyapunov exponehts/L) (with

A > A > ... > A) approaches a characteristic density [74]. Furthermore, the dimension
and the Kolmogorov-Sinai entropy of spatially extended systems are proportional to the
system sizé. [17].

In all of the above considerations we implicitly assumed a spatially homogeneous per-
turbation vector and studied the temporal evolution of its spatial average. We can, however,
also start with a localized perturbation and follow its evolution in space and time. The sta-
bility of such perturbations can be characterized by velocity-dependent [30] or local [90]
Lyapunov exponents.

Another peculiarity of certain spatially extended systems is known as stable chaos [95].
This notion refers to the instability with respect to finite perturbations of systems with a
negative largest Lyapunov exponent. Systems exhibiting such behaviour are characterized
by a very strong nonlinearity in the local dynamics, e.g., a discontinuity of the local map.
An indicator for the stability of such systems is given by the velogityof nonlinear in-
formation propagation that is calculated as follows. Two repligés,t) anduy(x,t) of the
system are initially prepared to be in identical states everywhere except for a small spatial
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region, where they have a finite difference. The systems are then let evolve independently,
andvg is calculated as the average propagation velocity of the front of the perturbation.
Systems exhibiting stable chaos are characterized by a positive velpcity) and a nega-

tive largest Lyapunov exponefit< 0, whereas stable systems hayge= 0 andi < 0. The
mechanism responsible for stable chaos is still under investigation [45]. In continuous-time
systems stable chaos has been found in a chain of periodically kicked oscillators [19]. So
far, stable chaos has not been observed in PDEs [46] and may therefore be regarded as an
effect which is not typical for physical systems.

2.3 Synchronization Phenomena

2.3.1 Coupled Dynamical Systems

The phenomenon of synchronization of coupled periodic oscillators is known for a long
time. Only recently, however, it has been found that also coupled chaotic systems are able to
synchronize [33, 110, 88, 87]. The basic mechanism can be described as follows. Consider
two coupled nonlinear maps,

(2.8)

wheree; > are the coupling parameters which may be different. The scheme is sketched in
Fig. 2.3. Two frequently studied special cases are bidirectianat ¢, = £) and unidirec-

tional (1 = 0, &, = €) coupling. The systems are synchronized if the differameeu; — u,
vanishes.

The asymptotic stability of the synchronized state can be studied by considering a small
perturbationw(t) of the synchronized state. The dynamical evolutiow(f is in first order
given by (see Sec. 2.1.2)

W(t+1) = (1—e1—e2) ' (un(t))w(t),

<&l

«

System 1 System 2

»
-

€2

Figure 2.3: Sketch of the synchronization scheme.

10
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wheref’ is the derivative off. For the absolute valuev| we obtain

t—1
[W(t)| = (1—e1—e2)' [W(O)] [L\ ' (uy(7))]

-1
- \w<o>|exp{ [In(lelszwtltzoln | f’(ul>\] t} .

The synchronized state is asymptotically stable if the transverse (or conditional) Lyapunov
exponent

AL ={(In|f'(u)]) +In(1—e1— &)

is negative (due to ergodicity the average is over the phase space according to the natural
measure ofl;). For small perturbations of the synchronized state we have u, such

that the coupling has negligible influence on the evolution (and thus the natural measure) of
u1. This enables us to replace the average ¢f'lfu;)| by the Lyapunov exponent of the
uncoupled map and to obtain fraim < 0 the synchronization condition [88]

gt+eo>1—e”. (2.9)

In the case of bidirectional couplingy(= &2 = €) we thus have the critical coupling param-

eter

= (1-e?).

These relations also hold for higher-dimensional maps.
For coupled systems of ODEs (with the coupling ma@irqual to the unit matrik)

duq (t
10— (a(1)) + exClua(t) - ua(t)],
dua(t) (2.10)
o = (uz(t) +exClus(t) —ua(t)),
similar considerations lead to the synchronization condition [33, 88]
e1+e>A. (2.11)

If the coupling matrixC is not the unit matrix (e.q., if the systems of ODEs are coupled
only in one vector component), the synchronization condition (2.11) does not hold. Instead,
one has to calculate the transverse Lyapunov expanefrbm the linearized equations for
a perturbatiow of the synchronized state and check for whidhis negative.

The synchronization conditions (2.9) and (2.11) can be used in experiments to measure
the largest Lyapunov exponeat which is very difficult to estimate from time series. There
are other mechanisms besides diffusive coupling that lead to the synchronization of chaotic
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2 Nonlinear Dynamics and Stochastic Models

systems; a general framework is given by the active-passive decomposition [68]. Further-
more, there are other forms of synchronization like phase synchronization and generalized
synchronization [106, 94]. If the coupled systems are notidentical (as it is inevitably the case
in experiments), the existence of unstable periodic orbits close to the attractor can lead to
temporary desynchronization events even if the conditions (2.9) or (2.11) are fulfilled [89].
The synchronization of spatially extended systems is treated in detail in Ch. 5.

2.3.2 Example: Coupled Skew Tent Maps and Lorenz Equations

As examples for the synchronization of chaotic systems we now consider skew tent
maps (2.5) with parametes = 1/3 and the Lorenz differential equations (see, e.g.,
Ref. [52])

X o(y—X)
a y| = | px—y—xz (2.12)
z —Bz+Xxy

with parameters = 10,p = 28, ands = 8/3. The maps are coupled according to Eq. (2.8),
the Lorenz equations are coupled according to Eq. (2.10)wyith(x;,Yi,z)" and the cou-

@ 4.4 ®
A f A
= 0.2 1 = | |
v - T v
0 1 ‘ 1 ‘ 1 O 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1
0 6 T ‘ T ‘ T —| 17 T ‘ T ‘ T ‘ T ‘ T ]
0.4 . 0.5F .
< 0.2 ~ < F ;
- - 07 .
o ] C 7
-0.2- l l -05F =
0 0.1 0.2 0.3 0 1 2 3 4 5
€ €

Figure 2.4: The synchronization transition of coupled (a) skew tent maps and (b) Lorenz equations.
In the upper panels the average synchronization gfiwli,), (time-averaged after some transient
phase) is shown. In the lower panels the Lyapunov exporfgrisolid lines,i = 1,2 for the maps

andi = 1,2, 3,4 for the ODES) as well as the transverse Lyapunov expohgiitiashed lines) are
shown.
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2.3 Synchronization Phenomena

pling matrix

C=

o o
o OO
O O o

corresponding to coupling via thecomponent. In both cases we apply bidirectional cou-
pling, &g = & = &.

In Fig. 2.4 the coupling dependences of the average synchronization(gwior), =
(|lur—uzlly);, the Lyapunov exponentg, and the transverse Lyapunov expongntare
shown (for the Lorenz equations only the four largest Lyapunov exponents are of inter-
est here). The first observation is that bathand A, become zero at the critical coupling
parametek.. For the coupled maps; ~ 0.235 in agreement with the synchronization con-
dition (2.9). The second observation is that the largest Lyapunov expaénbas the same
value fore > ¢; as without coupling. This happens because the coupling term vanishes in
the case of synchronizationy= u,). We further observe that the largest Lyapunov expo-
nent2; of the coupled Lorenz equations increases for small values(fufr the coupled
tent maps this happens only for very small values tifat are not resolved in Fig. 2.4(a)).
This effect is known as coupling sensitivity of chaos and is studied in Ch. 3. Finally we note
that the fourth Lyapunov exponefj of the coupled Lorenz equations becomes negative
for somee < .. This corresponds to phase synchronization (see Refs. [106, 94] for details).
In Fig. 2.5 the temporal evolution of the variablgsandx, of the Lorenz systems with and

uncoupled coupled

T T T T T T T T T

L h L L | L L L L
550 600 65(C

t

Figure 2.5: Synchronization of two identical Lorenz systems; shown are the first components
When the couplingd= 5) is switched on at= 600, both systems synchronize after a short transient.
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2 Nonlinear Dynamics and Stochastic Models

without coupling is shown. Both Figs. 2.4 and 2.5 show that the synchronization transition
is a transition between two different chaotic states, as opposed to the transition from regular
to chaotic motion.

2.4 Stochastic Modelling of Chaotic Fluctuations

The phenomena described in the following chapters of this work are found for many differ-
ent chaotic maps or differential equations. Rather than studying special systems, it seems
thus natural to look for common characteristics. All systems considered in this work share
the properties of fluctuations due to their chaotic nature and coupling between subsystems.
In recent years it turned out that for several problems it is possible to model the chaotic
fluctuations by random variables [88, 13, 85, 111, 34] (for an introduction see Ref. [25]).
The phenomena studied in this work are found in the perturbation dynamics of coupled sys-
tems (Lyapunov exponents, synchronization error) rather than in the dynamics of their state
variables. We therefore aim at stochastic models of the perturbation dynamics of coupled
chaotic systems. Lyapunov exponents are widely used in the context of random dynamical
systems [25, 7].

In this section we give a first overview and show relations to other work on stochas-
tic dynamics. The particular models used to study the phenomena of coupling sensitivity of
chaos and the synchronization transition in extended systems are introduced in Chs. 3 and 5,
respectively. To be able to make use of the Fokker-Planck equation, we choose continuous-
time models with Gaussian white noise. This choice is motivated by the observation that
the effects we study are found for discrete-time as well as continuous-time systems and
do not seem to depend on the distribution of fluctuations of particular systems. For low-
dimensional systems very simple stochastic models can already be sufficient. In Ch. 3 a
system of two stochastic differential equations is used to model the dynamics of the pertur-
bation vectors of two weakly coupled chaotic systems. In high-dimensional systems spatial
diffusion often plays an important role. In Ch. 5 a stochastic partial differential equation
provides an adequate model for the synchronization transition of coupled spatially extended
systems.

Problems are encountered for systems with long temporal correlations, in which white
noise is not able to replace the fluctuations. Some examples are presented in the following
chapters. Most chaotic systems, however, show a rapid decay of temporal correlations.

2.4.1 Zero-Dimensional Systems

Stochastic differential equations (zero spatial dimension) have been studied extensively,
mostly in the contexts of fluctuating control parameters as well as internal and external
noise [58, 103]. Unexpected effects like noise-induced transitions and ordering by noise
have been reported. In this work, we want to model the long time behaviour of perturbations
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2.4 Stochastic Modelling of Chaotic Fluctuations

(with the Lyapunov exponerit),
w(t) — w(0)e"t for t— oo,

but also allow for finite-time fluctuations. Our first ansatz is the simple linear Stratonovich
stochastic differential equation (see App. A.2 and Ref. [103])

WO _ prewmo). 2.1

whereé (1) is a Gaussian stochastic process with

(€M) =0, (EMmE(t)) =20%5(t—t))

(the averages are over different realizations of the noise process). We notiagtihstays
positive ifw(0) > 0. The solution is simply given by

w(t) = w(0) exp<1t+/ot§(f) df) =w(0) exp(lt+\/§2W(t)> , (2.14)

whereW(t) is a Wiener process (see App. A.2). Silfeé&) /t — 0 fort — co with probability
one, we have
w(t) — w(0)et for t— oo

with probability one. We find a transition between exponential growth and decay-41.
From Eqg. (2.14) we obtain the finite-time Lyapunov exponent

V262

At =2+

W(t).
Its average and variance are given by (V\(itW(t)]2> =t, see App. A.2)

202
() =2, (RO-A2) ==

The simple ansatz (2.13) is sufficient to understand the origin of the coupling sensitivity of
chaos, see Ch. 3.
For the momentéw) we have

(WA(t)) = ar (Wi(t)) +a(&(twi(t))
= (91 +0P0®) (WA(1))

where we have used the Furutsu-Novikov relation [35, 83] for the second average (see also
App. A.2). The solution of the last equation is given by

(WA(t)) = (wA(0)) g+,

Sa
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2 Nonlinear Dynamics and Stochastic Models

We thus find a transition &t = —qo?, which seems to be in contradiction to our previous
result indicating a transition at= 0.

A closer look reveals that the moments are dominated by rare, but large finite-time
fluctuations, which is not the case if we add a nonlinear damping term to Eq. (2.13),

MY — (a2 - O w), w(o) >0, (2.15)
wherev is positive. Againw(t) stays positive ifw(0) > 0. For this equation all moments
show the same transition at= 0 [104, 47]. From the stationary solution of the Fokker-
Planck equation or by means of embedding methods it can be shown thatfor we
have [104, 47]

<VVq> — (VGZ)q/VF (#;— %)

I(ie)
For a quadratic nonlinearity (= 1) the expression for the first moment reduce&ip = A.

The connection with the synchronization of coupled low-dimensional chaotic systems is
as follows. If we interprek = 1, as the transverse Lyapunov exponentand ||u; — uz||
as the absolute synchronization error, the damping ensures that the latter stays limited if
A, > 0. The result (2.16) describes the dependence of the average absolute synchronization
error on the transverse Lyapunov exponent, whicluioe us is approximately proportional
to the difference. — € between the coupling parameter and its critical value (see Sec. 2.3).

(2.16)

2.4.2 Spatially Extended Systems

In this work we limit ourselves to one spatial dimension. Generalizations of the concepts
to higher dimensions are straightforward. Here we only give a brief introduction to the

stochastic modelling of the perturbation dynamics of spatially extended systems; details
can be found in Refs. [91, 93] and Ch. 5. We start by adding a diffusion term to the linear
multiplicative noise equation (2.13) of the previous section,

ow(x,t)
ot

wherecis a constant that will turn our to be related to the Lyapunov expohemtde is the
diffusion constant. The sign of(x,t) may vary in space. Note, however, the(ix,t) stays
positive if the initial statev(x, 0) is positive at alk. The Gaussian stochastic procé$s,t)

has the properties

(E(x,t)) =0, (E(XDEX ) =26%8(t—t')fF(x—X).

We are particularly interested in the theoretical lihik —x') — §(x—X), that induces the
practical problem that becomes discontinuous with respeckt@&mall spatial correlations,
however, are not expected to change the critical properties of the model (see Ref. [55] for

= [c+ E(x,t)]w(X,t) + eAw(x,t), (2.17)
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2.4 Stochastic Modelling of Chaotic Fluctuations

a discussion of correlated noise in the closely related KPZ equation, which is described in
the following paragraph).

By application of the Hopf-Cole transformatidn= In|w,
into [91]

, EQ. (2.17) is transformed

w = C+E(Xt) +eAh(xt) +e[Oh(x,1)]?.

This is the Kardar-Parisi-Zhang (KPZ) equation for growing and roughening interfaces [66].
For this well-studied equation several scaling laws are known [9, 55] that are also found in
the perturbation dynamics of spatially extended dynamical systems [91, 93]. The average
velocity of the saturated interface is equal to the largest Lyapunov exponent,

A :c+ggm<[mh(x,t)]2>x.

Using this equivalence, finite-time and finite-size scaling relations for the Lyapunov expo-
nent have been derived [93].

In Ch. 5 we study the synchronization transition of coupled spatially extended dynami-
cal systems. There a nonlinear saturating term will be added to the stochastic PDE (2.17) to
limit the magnitude of the synchronization errefx,t). Nonlinear spatially extended mul-
tiplicative noise equations have been studied extensively during the last years in a variety
of contexts [105, 36, 12, 108, 51, 81, 107, 82, 40]. Some of the results that are of interest
for the synchronization transition are reported in Ch. 5. We just mention that in contrast
to the zero-dimensional case the transition parameter between stabl®) and unstable
(w finite) solutions can depend on the noise amplitude [36, 12]. Furthermore, the applica-
bility of stochastic models of chaotic spatially extended systems can be limited in systems
displaying spatio-temporal intermittency, when laminar structures play an important role in
the dynamics [18].
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3 Scaling of Lyapunov Exponents

In 1985 Daipo discovered by means of numerical simulations that the Lyapunov exponents
of weakly coupled chaotic maps show a very strong dependence on the strength of the
coupling [26]. He was able to find an approximate logarithmic scaling relation and coined
the notion “coupling sensitivity of chaos” for this behaviour. Further studies with different
systems indicated that the effect is very general [27, 28, 29].

In this chapter a stochastic continuous-time model is presented that captures the essen-
tial aspects of the perturbation dynamics (the basic idea of stochastic modelling of chaotic
fluctuations is explained in Sec. 2.4). It gives a general scaling relation which includes as
a limiting case the logarithmic scaling found byaldo. The model further allows one to
understand the origin of the effect and the significance of certain parameters. A perturbative
method (the small noise expansion [6]) is shown to be not applicable to weakly coupled
systems. Results of numerical simulations are presented that confirm the predictions of the
derived scaling relation. Finally, a random walk picture is introduced that sheds light on the
origin of the logarithmic singularity.

Parallel to our work, a similar stochastic model has been usedsmycGNiand ROLITI
to estimate the Lyapunov exponent of a coupled map lattice in the limit of weak cou-
pling [22] (see also Sec. 3.1.2). The analytical calculations in Secs. 3.2.2-3.2.5 have been
carried out by RDIGER ZILLMER and are described in detail in his diploma thesis [112].
Some of the results of this chapter have been published in Refs. [113, 3, 114].

3.1 Coupling Sensitivity of Chaos

3.1.1 The Effect

The basic system already studied byDo consists of two coupled one-dimensional maps,
(3.1)

wheret € Z is the discrete time variable, is the coupling parameter (i.e. the coupling
strength),u; andu, are the state variable$,is the nonlinear map, anglis the coupling
function. In the following we always chooggu,,u;) = f(u2) — f(uy), corresponding to
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3 Scaling of Lyapunov Exponents
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Figure 3.1: Coupled skew Bernoulli maps, Eq. (3.3). (a) The Lyapunov exporgantsA; (solid
line) andA, — A, (dashed line) versusfor a= 1/3. (b) The same data in scaled coordinates.

diffusive coupling! We emphasize, however, that the effects described in this chapter are
also found for other coupling functions.

Since the system under study is two-dimensional, we can calculate two Lyapunov ex-
ponents by studying the dynamics of the linearized system

wi(t+1) = (1—¢&) ' (ug(t))wa(t) +ef’(ua(t))wy(t),

Wt +1) = (L) (ult) walt) + £ ' (L (0 wa(t). ©2)

wheref’ denotes the derivative df Without couplinge = 0, we have two identical systems
with the same Lyapunov exponents When coupling is introduced, the Lyapunov expo-
nents are in general different. Furthermore, their values depend on the coupling parameter
€. We thus have the two Lyapunov exponehiée) andz(e).

The observation of BIDO was that for small values of the coupling parameteg:
1, the Lyapunov exponents diverge from each other and from the zero couplingavalue

according to

1 1 1

Ine  [Ing|’ 1.2 Ine|

A —Ap ~

He found this to be a common behaviour of different ma@sd different coupling func-
tionsg [26].

As a first example we study the dependence of two coupled skew Bernoulli maps on the
coupling parameter. The skew Bernoulli map is defined as (see also Sec. 2.1.3)

u/a ifu<a,
a)/(1—a) ifu>a,

INaively choosingy(ug, up) = up — up would give rise to the possibility that the »(t + 1) lie outside of the
interval that the mag is acting on (see also Sec. 2.2).

f:[0,1] — [0,1], u»—>{(u_ (3.3)
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3.1 Coupling Sensitivity of Chaos

wherea € (0,1) is a parameter. The Lyapunov exponents of the system (3.1) of coupled
maps are calculated by standard numerical methods (cf. App. A.1). In Fig. 3.1 the differ-
ences of the Lyapunov exponenits, from the single map valug are shown as functions

of the coupling parameter From Fig. 3.1(b) it can be seen that for small values thfese
differences scale according to

1

M A~
' [Ing|’

=12

3.1.2 Previous Theoretical Results

There have been different theoretical approaches to understand the origin of the coupling
sensitivity of chaos. They have in common that they started from discrete-time dynamics,
i.e., coupled maps.

DAIDO used an expansion of the local Lyapunov exponents of coupled maps and was
able to reproduce the/line| dependence [27]. He pointed out out the importance of fluc-
tuations of the local expansion rates and stressed that this prerequisite distinguishes the
coupling sensitivity from the usual sensitive dependence on initial conditions. He later in-
troduced a discrete-time stochastic model that shows the logarithmic singularity, but not the
guantitative dependence on the magnitude of fluctuations of the local expansion rate [29].

The following theoretical results have been obtained for the largest Lyapunov exponent
of coupled map lattices with weak coupling. In that context, which corresponds to the limit
of infinitely many (instead of just two) coupled systems, a similar logarithmic singularity
(with different prefactors) is observed.

Livi et al. found an analogy to the problem of directed polymers in random media.
They used a mean field approach and a tree approximation to estimate the dependence of
the Lyapunov exponent on the coupling strength [75]. While their model approximately
shows the 1|Ine| dependence, it wrongly predicts a phase transition at a critical coupling
strength.

CecconNland PoLiTl were able to improve the previous approach by using-tnee
approximation [21]. They found that the critical coupling strength of the spurious phase
transition shifts to higher values efwith increasing tree depth

Finally, CEccoNiand PoLITI used a continuous-time approximation of a discrete-time
model [22]. Parallel to our work, they found a relation similar to our result (3.11) (including
the quantitative dependence on the magnitude of fluctuations of the local expansion rate),
but with different prefactors because of the high dimensionality. Furthermore, they were
able to find an approximate result for coupled maps which have derivatives with fluctuating
signs.

Our own approach does not start from coupled maps, but uses a simple continuous-
time stochastic model of the perturbation dynamics with the key ingredients of exponential
growth, finite-time fluctuations, and coupling. It further allows for different Lyapunov ex-
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3 Scaling of Lyapunov Exponents

ponents of the coupled systems, which is needed to understand the phenomenon of avoided
crossing of Lyapunov exponents (see Ch. 4).

3.2 Analytical Approach

3.2.1 Stochastic Model

The universality of the effect of coupling sensitivity of chaos indicates that there exists an
underlying mechanism not connected with any special system. Furthermore, the effect has
been found for both two- and higher-dimensional systems. The basic ingredients common to
all studied systems are temporal fluctuations (due to the chaotic nature of the dynamics) and
weak coupling. Since we are interested in the Lyapunov exponents, we look for a model for
the perturbation dynamics, Eq. (3.2). We replace the fluctuating derivdtiegshe chaotic
function by stochastic processes. In order to be able to derive a Fokker-Planck equation,
we use Gaussian distributed processes. Their means and variances are connected with the
chaotic systems as will be explained below. To include the more general case of coupled
nonidentical systems, we allow these parameters to be different for the coupled systems.

Since the effect of coupling sensitivity is already found in two-dimensional systems, a
two-dimensional model can be expected to be sufficient. For higher-dimensional systems,
our model describes the dynamics in the directions corresponding to the largest Lyapunov
exponents of the individual systems. Summarizing, we propose the two-dimensional system
of Langevin equations

dwa(t) (A1 + 2a(t)]wa(t) + e[wa(t) —wa(t)],
det(t) (3.4)
V20 _ pg-+ 2a(t)walt) + elwa(t) - wolt)

as a continuous-time model for the linearized equations of the coupled chaotic systems.
These equations have to be interpreted in the Stratonovich sense. The choices of multiplica-
tive noise processes and the Stratonovich interpretation are explained in Sec. 2.4.1. The
Gaussian stochastic procesgesindy, are independent and distributed according to

(xi(t)) =0, (6 (®)xj(t)) =2078;8(t—t'), i,je{1,2},

where the averages are over different realizations. Three groups of parameters describe three
important ingredients of the dynamics:

1. TheLyapunov exponentsf the uncoupled systems are described by the constants
A1 2.

2. Thefluctuations of local expansion rate$the uncoupled systems are characterized
by the parameter@fz. They are closely related to the distribution of local (finite-time)
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3.2 Analytical Approach

Lyapunov exponentgé(t), see Sec. 2.1.2. For the stochastic model (3.4) the local
Lyapunov exponents are finite-time averages of the Gausstamrelated processes,
so that their distribution is also Gaussian with meaand variance &2/t [25],

Prob(A(t)) ~ exp(—t(T)2

An approximate value of? can thus be calculated from the variance of local Lya-
punov exponents of a given chaotic system. In connection with the numerical simu-
lations in Sec. 3.4, the parameterdwill be calculated for different systems.

3. Thecouplingis described by the coupling parameter~or a while a symmetrical
coupling is assumed, the case of asymmetrical coupling is considered below.

It has to be stressed that we assume the statistical properties of the individual systems
(characterized by the distributions of the stochastic procegsgso be independent of the
coupling. This assumption can be justified by means of results from a perturbation analysis
of weakly coupled maps [20] indicating that the invariant measure depends on the cou-
pling strength in a nonsingular way. Nevertheless, our model will certainly fail for strongly
coupled systems.

Without fluctuationse? = 63 = 0, and equal Lyapunov exponents of the uncoupled
systemsA; = Ap = A, we have a two-dimensional system of linear differential equations,

E wi\  [A—e € Wy

d\w/ \ & A—¢g)/\w/"’
The Lyapunov exponents are simply the eigenvalues of the time-independent real symmetric
matrix (see Sec. 2.1.2). We thus obtain

M=A, A=A —2¢

for the Lyapunov exponents of the coupled systems. This means that without fluctuations of
the local expansion rates we have no coupling sensitivity of chaos, a result that was already
observed by BIDO [26].

3.2.2 Fokker-Planck Treatment

To obtain the value of the largest Lyapunov exponent of the stochastic model, we now
calculate the stationary probability density of the associated Fokker-Planck equation. The
analytical calculations are described in detail in Ref. [112], here only an overview of the
procedure is given.

First we perform a transformation to new variables. For large times and positive cou-
pling € both variablesvy » have the same sign. It is easy to see that the regigns, > 0
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3 Scaling of Lyapunov Exponents

andwi,w» < 0 are absorbing ones becauseviar= 0 we havew; = ew, and forw, =0
we havew, = ew;. Thus eventually one observes the state wittv, > 0 independently of
initial conditions. So the transformation

v = In(wy/wp), Vo = In(wiwg),

can be performed, leading to the equations

% = &1 —2esinhvy + A1 — Az, (3.5)
dV2
E :§2+2£COSW1+A1+A2—28, (36)

whereé; = y1 — x2 andé; = y1 + x». By means of the transformation of variables we have
simplified the equations in two ways. First, the multiplicative noise processes have been
transformed to additive ones. Second, Eq. (3.5)viois independent of Eq. (3.6) fon.

Thus, although the stochastic proces&esare no more statistically independent, we can
write the Fokker-Planck equation for the probability denpity;,t) [100] (see App. A.2),

ap(V]_,t)
ot

. 0 0 5 0°
= Zecosh/1+288|nhvla—vl — (A1 —Az)a—vl + 20 a_vf} p(vy,t), (3.7)

wherec? = (62 + ¢2) /2. The stationary solution of (3.7) is given by [112]
)
pstafV1) = N exp(lvl ~ 2 COSh/l) , (3.8)

wherel = (A; — A2)/(26%) andN is a normalization constant.
Basing on the solution (3.8) we now calculate the largest Lyapunov exponent of the
coupled system, defined by

Mztli_r]got}<lm/wf+w§> :Jm%<ln(m€+mé)> ,

where the averages are over different realizations of the noise processes. The logarithm can
be expressed in terms ef andv; as

In(wWi +w3) = In <W1W2 val + :,sz>) =Vz2+In(2coshvy).

2 1

Since one is interested in the long-time limit, the stationary distribution (3.8) ofay be
used, leading to

. 1 1
A= tlﬁl]o { E <V2>Pstat + E <|n(2COSh/l)>Pstat} ’
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3.2 Analytical Approach

In the following, all averages are meant with respect to the stationary distribution. Because
(In(2coshv)) is finite and time-independent, the second term vanishes-fero. In the

first term, (v,/t) can be replaced bi,) . Thus the Lyapunov exponent can be calculated
by averaging the r.h.s. of Eq. (3.6),

1 T
173

The averaging with the stationary distributipga(v1) yields (see Ref. [112] for details)

Ky jij(e/0%) +Kappy(e/0?)
2K\||(8/62) ’
where theK| are modified Bessel functions (Macdonald functions) [1]. Substituting this in

Eqg. (3.9) we obtain a final analytical formula for the largest Lyapunov exponent. We write
it in scaling form,

M—(M+A2—2¢)/2 & Kiyy(e/0?) +Kyuyy(e/0?)
2 o 62 2K|||(£/O'2)

This form demonstrates that the essential parameters of the problem are the coupling param-
eter and the Lyapunov exponents’ mismatch normalized to the fluctuation of the exponents,
€ A1—A2

— and | =

c? 2062
respectively. If the Lyapunov exponents of the two interacting systems are agual, =
A, the parametdrvanishes and we obtain (cf. [22])

Ki(e/0?)
M—A=e_—"—"—¢. 3.11
We gain further insight into the scaling behaviour by approximating the modified Bessel

functions. Simplified expressions can be obtained in the following limiting cases:

(V) =e(coshvy) + %(Al +A2—2¢). (3.9)

(coshvy) =

(3.10)

o

Small coupling, equal Lyapunov exponents. For small coupling:/ o2, the leading term
in £ is singular as it follows from the expansionskof andKq [1] in Eqg. (3.11),

o2

" |In(e/0?)]”
This formula corresponds toAIDO’s singular dependence of the Lyapunov exponent

on the coupling parameter[26, 27, 28] and will be checked by means of nhumerical
simulations in Sec. 3.4. It is valid in all cases when identical chaotic systems are cou-
pled symmetrically, provided that the Lyapunov exponents in these systems fluctuate
(6% > 0). Moreover, even for different systems having, however, equal Lyapunov ex-
ponents (but not necessarily equal fluctuations of the exponents) we get the same
singularity as for identical systemsaAbo arrived at a similar result in his analytical
treatment of coupled one-dimensional maps, cf. Eq. (19) of Ref. [29].

AM—A (3.12)

25



3 Scaling of Lyapunov Exponents

No fluctuations, equal Lyapunov exponents. With vanishing fluctuationsg?® — 0, and
fixed coupling parameter, we hagg¢s® — . In this case the fraction in Eq. (3.11)
becomes unityK; (¢/62) /Ko(e/5?) — 1, and we obtain

M=A.
This is consistent with the result one directly gets from the model without fluctua-
tions, see Sec. 3.2.1.

Small coupling, different Lyapunov exponents. The expansion (3.12) remains valid for
small values of mismatch|, if (¢/6%)!' is close to 1. For larger mismatch, when

N
) <1
(G2) <t

the largest Lyapunov exponent is

r(1—|l
llz202||]7( H)<

e\l 1
r(1+|1) )

262 +§(\A1—A2\+A1+A2)- (3.13)

max{A1,A2}

The singularity is now of the power-law type, with the power depending on the sys-
tem’s mismatch. Note that this is the correction to the largest of the Lyapunov expo-
nents of the uncoupled systems. The dependence of

_ ),1—(/\14-/\2—28)/2

SA > (3.14)

o

on |I] is shown in Fig. 3.2 for the coupling parametefc® = 10-°. Plotted are
Eq. (3.10) and the appropriate form of the approximation (3.13),

ra—|i) , e \2
~[14+2—— 5 = .
o4 ~| ‘[ + r(1+|1)) (202>
With increasing differencé| the influence of the coupling oy decreases. For large
|I| we thus have,; ~ maxAj », such that Eq. (3.14) becomes (fgfo? < |1|)

I |A1—A2| /2+¢

0
o2

~ Il

which can also be seen in Fig. 3.2.

Large coupling. Fore/a?>> 1 the expansion of (3.10) gives

o (1+3%¢* 1

It has to be kept in mind, however, that for large coupling the Langevin equations (3.4)
cannot be expected to be a reliable model of coupled chaotic systems. Therefore
Eq. (3.15) should be seen as a result which is only valid for the model itself.
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3.2 Analytical Approach
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Figure 3.2: The dependence afA (see Eq. (3.14)) on the differen¢d. Shown are the exact
result (3.10) (solid line), the approximation (3.13) (dashed line), and the asymptotic beh#vieur

|I| (dash-dotted line).

3.2.3 The Second Lyapunov Exponent

The sum of Lyapunov exponents can be calculated from the divergence of the phase space
volume using Egs. (3.4),
oWy OW»
1+ A2 <6W1+6W2> 1+Ax—Ze
This enables us to find an expression for the second Lyapunov exponent,
lz—AzZ—(ll—Al)—ZS. (3.16)

The singularity is the same as for the first Lyapunov exponent, it just has the opposite sign.
The linear decrease corresponds to the synchronization effect, leading to a nag#tive
coupling strengths larger than some critieal

3.2.4 Generalized Lyapunov Exponents

By means of the Furutsu-Novikov relation (see App. A.2) it is further possible to obtain
results for some of the generalized Lyapunov exponents [25]

1
L(q) = lim —In<(vv§+w§)Q/2> ,
t—oo t
where the average is over different realizations of the noise processes. Details can be found
in Refs. [112, 113]. Here we only give the results (far= A = A) [113]
L(1) =A+02, (3.17)
L(2) = 2A + 3062 — 2e 4 \/ 0% + 4¢2. (3.18)
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3 Scaling of Lyapunov Exponents

Together with the trivial general result(0) = O we can approximaté(q) with the
parabola [113]

L(q) = aq+ B
with the parameters

a:ZL(l)—@ and B:—L(l)+@,
giving
2 2
L(q):q(A+%+e—%\/o4+482)+qz<%—s+% o4+482>. (3.19)

In the two limiting cases of weak and strong coupling, the square root in Eq. (3.19) can
be expanded. In first order we obtain for weak couplieypf < 1)

£2 o s £2
L(q) zq<A+eg) +q <G —e+;) ;
while for strong couplingq/c? > 1) we obtain
? ot , (o o
L(q)~q<A+?—§>+q (?—i-g), (3.20)

The latter expression will be compared with the result of the small noise expansion in
Sec. 3.3 below.

3.2.5 Asymmetrical Coupling

An interesting generalization of the stochastic model is to consider asymmetrical coupling,

delt(t) = [A1+xa(t)]wa(t) + ex[wa(t) —wa(t)],
dwét(t) = [Ap+ 22()]Walt) + ea [y (t) — wa(t)],

which can be reduced to the symmetric case by means of the transformation

Wi = /€Wy, Wo = /e1W>.
We thus obtain the result

M—(MtAr—ea—e)/2 e Kij(e/o?) +Ki(e/0?)
62 o2 2K ((e/0?) ’
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3.3 Small Noise Expansion

with the effective coupling parameter and the effective mismatch

1
e=+/g1e, and | = g[(Al—sl) — (Az—&‘z)] ,
respectively [113].
In the extreme case of unidirectional coupling we can calculate the Lyapunov exponents
directly from the model

dwét(t) = [Ar+ 22 (D) (1),
dwjt(t) = [A2+ x2(D)]wa(t) + ewa (t) —wa(t)].

For the first autonomous equation we obtain= A;. The sum of both Lyapunov exponents

can again be calculated from the divergence of the phase space volume. This gives us the
value of the second Lyapunov exponest= A, — €. For unidirectionally coupled systems

we thus have no coupling sensitivity [113].

3.3 Small Noise Expansion

Expansions of the largest Lyapunov exponent as well as the generalized Lyapunov expo-
nents of a stochastic system in terms of the noise amplitude have been fouminy B.et

al. [6]. Relevant for our model is the white noise case with two distinct real eigenvalues of
the deterministic system. The linear Stratonovich stochastic differential equation (see also
App. A.2) has the form

m
dx = Axdt + & ZlBiXOOW'(t)’ (3.21)

wherex € R?, B; and

(a1 0
A—<0 a2>7 a; > ay,

are real 2« 2 matricesg is the small noise amplitude, and WMit) are independent Wiener
processes. The largest Lyapunov exponent can then be expanded as [6]

2m

A = a1+ Zb| 12bi 21+ 0(8?).

The expansion of the generalized Lyapunov exponents is given by

L°(q) = <a1+ Zb. 12b;, 21) N — Zlb. 11+90(8%) +0(c?).
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3 Scaling of Lyapunov Exponents

In the following we assuma; = A, = A ande/c? > 1 (small noise amplitude). Our
model (3.4) can be written as

2
dw = Awdt + § leinaW,(t),
i=

wherew = (w1, W,)T, § = V262, dWi(t) = x;(t)dt,

A—¢ € 10 0 0
A_< ) A_g), Bl_<0 0), and Bz_<0 1).

The eigenvalues ok area; = A anda; = A — 2¢. In order to bring our system to the form
of Eg. (3.21), we have to diagonaliZzeand transform the matricd® accordingly. This is
accomplished by the orthogonal matrix made up of the eigenvectors,

1/1 1
©°=3 <1 —1> '
From the resulting matrices

1/1 1 1/1 -1
T _ L T _ =
O 810—2<l 1) and O BZO_2<_1 1>

we obtain the expansions

2
(o2

M=A+—
1 T

and X )
Sy o 20
L(q)_q<A+2>+q 5

Comparing these results with our results obtained by means of the Fokker-Planck equation
(Egs. (3.15) and (3.20) for small noise amplitude, i.e., large?), we find that they co-
incide up to ordew?. Thee-dependence of; andL(q) occurs, however, in order* and

is therefore not captured by the small noise expansion up to eigfurthermore, the
Fokker-Planck treatment gives the general result (3.10) which is also valid for small values
of /02 (large noise amplitudes). Since the stochastic model is only valid for small values
of ¢, the small noise expansion is not applicable in the context of weakly coupled chaotic
systems.

3.4 Numerical Simulations

We now compare the results obtained for the system of continuous-time Langevin equations
with numerical calculations for both continuous- and discrete-time deterministic systems.
The Lyapunov exponents are calculated as described in App. A.1.
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3.4 Numerical Simulations

3.4.1 Discrete Maps

We first study systems of two diffusively coupled one-dimensional nfapsEqg. (3.1). To

have a good correspondence to the theory, we use only mappings with a constantfsign of
below, so that the fluctuations of the local expansion rate are the only source of irregularity
of the perturbation dynamics. Another source of irregularity could be irregular changes of
the sign of the derivativé’ (as for the logistic and the tent maps). Such an irregularity is not
covered by our continuous-time approach, but also leads to a logarithmic singularity similar
to Eq. (3.12), see Ref. [22].

Skew Bernoulli Maps

We first consider the skew Bernoulli map (3.3). For the uncoupled map, the Lyapunov ex-
ponent and the magnitude of fluctuations are given by (see Sec. 2.1.3)

A =-alna—(1-a)ln(1-a) (3.22)
and )
2_ Lo _a
o= 2a(l a) (In 1—a> , (3.23)

respectively. Fom = 1/2 we obtain the ordinary Bernoulli map. In this case, there are no
fluctuations of the local multiplierssf = 0), and no coupling sensitivity of the Lyapunov
exponents is observed.
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Figure 3.3: Coupled identical skew Bernoulli maps, Eq. (3.3). (&) The Lyapunov expoagrta

and2, — A versuse for a= 1/3 (solid lines),a= 1/4 (dotted lines)a = 1/5 (dashed lines), and
a=1/6 (dash-dotted lines). (b) The same graphs in scaled coordinates. The long-dashed lines show
the analytical resultél; — A)/6® = 1/|In(e/c?)| and(A, — A) /6 = —1/|In(e/c?)|, see Egs. (3.12)

and (3.16).
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3 Scaling of Lyapunov Exponents

Figure 3.3(a) shows the differencés, — A versuse for maps with different values of
a# 1/2. From Fig. 3.3(b) it can be seen that different curves collapse onto single lines
for both exponents when plotted in the rescaled form according to (3.10), namgly-as
A)/c?versus ¥|In(e/c?)|. The resulting lines are in very good agreement with the leading
term of the theoretical predictioil; — A)/o? = 1/|In(e/c?)|, which is also shown.

No such good accordance between theory and numerical experiment is found in the case
of generalized Lyapunov exponents. In Fig. 3.4(a,b) the results(igrandL (2) are shown
for small values ot. Also shown are the theoretical predictions from Egs. (3.17) and (3.18),
respectively. The rough correspondence is completely lost for larger valuesithough
the considerations leading to Eqgs. (3.17) and (3.18) are not restricted taesmall

Much better results are achieved if the derivatiVeém the linearized system (3.2) are
replaced by independent and identically distributed Gaussian stochastic vaafles
1,2). Then the system of equations reads (due to the discrete time the Lyapunov exponents
and their finite-time fluctuations enter as arguments of exponentials, see Sec. 2.1.2)

wi(t+1) = (1—e)etwy(t) + ee2Owy(t),

(3.24)
Wa(t+1) = (1—e)e2Owy(t) + eestOwy 1)
with
@) =a, (&G0 -AlgE)-A]) =20%8;8v,  i,je{L2}.

14 (a) T T T T 55 (b)
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Figure 3.4: Generalized Lyapunov exponents for the skew Bernoulli maps. (a) Rescaled exponent
[L(1) — A]/o? versuse for the same values @ as in Fig. 3.3. The long-dashed line shows the
analytical resulfL(1) — A]/c? = 1, see Eq. (3.17). (b) Rescaled expongri) — 2A]/c? versus

¢/c? for the same values @fas in Fig. 3.3. The long-dashed line shows the analytical rés@j —

2A]/0? =3-2¢/0?+/1+4(¢/0?)2, see Eq. (3.18).
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Figure 3.5: Rescaled generalized Lyapunov exponents in stochastic maps. (a) The eXpthent

A]/c? versuse for A ando? corresponding to the values afused for Figs. 3.3 and 3.4. The long-
dashed line shows the analytical result. Compared with Fig. 3.4(a), the relative deviation of the
numerical data from the analytical result is small. (b) The expofiéB) — 2A]/c? versuse /o2 for

A ande? corresponding to the values afused for Figs. 3.3 and 3.4. The long-dashed line shows
the analytical result as in Fig. 3.4(b).

In Figs. 3.5(a,b) the results fau(1) andL(2), respectively, are shown together with the
analytical curves. The values afands? were calculated by means of Egs. (3.22) and (3.23)
with the values of used above for the skew Bernoulli map.

An explanation for the discrepancy between the deterministic and stochastic results is
that the distribution off’(u;) is changed with increasing while the distribution of the
stochastic variable§ remains constant. Furthermoifé(u; ) and f’(u,) are not statistically
independent for larger values afThese effects have no observable influence in the case of
usual Lyapunov exponents (Fig. 3.3) because of the singularity. In the case of generalized
Lyapunov exponents, however, the nonsingular scaling functions are much more sensitive
against changes in the distribution of multipliers.

Different Maps

One main result of the analytical approach is that the singularity does only depend on the
averages? = (o? + 03)/2 of the fluctuations of local expansion rates and on the mismatch
| = (A1 — A2)/(2062) of the Lyapunov exponents of the uncoupled systems. Although no
singularity occurs it? = 0, we can expect to observe coupling sensitivity in the case of one
system with fluctuationsof > 0) coupled to a different one without fluctuations < 0),
given that the mismatchis sufficiently small.

In order to check this prediction, we again numerically iterate the systems (3.1)
and (3.2), now choosing two different maps. The first map is again the skew Bernoulli
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3 Scaling of Lyapunov Exponents
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Figure 3.6: Different maps. (a1 — A andi, — A versuse for two coupled skew Bernoulli maps
with a=1/4 (solid lines) as well as one skew Bernoulli map wétk- 1/4 coupled with the dif-
ferent map (3.25) (dotted lines). ()1 —A)/c? and (A, — A)/c? versus ¥|In(e/c?)| for the same
examples as in Fig. 3.6(a). The long-dashed lines show the analytical results as in Fig. 3.3(b).

map (f1(u) = f(u) as in Eq. (3.3)), while the second map is defined as
fo(u)=¢€*u (mod 1), (3.25)

whereA is the Lyapunov exponent of the skew Bernoulli migp) (see Eq. (3.22)). With
this choice we have the parametefs> 0, o5 = 0, andl = 0 (because\; = Ay = A).

In Fig. 3.6 the result is compared with the previous result for two coupled identical
skew Bernoulli mapsa= 1/4 in either case). As expected, the logarithmic singularity is
observed in both cases, although the deviatipr- Aj| is smaller ife2 = 0. When rescaled
with the average?, however, the curves collapse onto single lines for the first and second
Lyapunov exponents, as can be seen in Fig. 3.6(b).

Strange Nonchaotic Attractors

DaIDO found out that for coupled logistic maggu) = 4u(1— u) the Lyapunov exponents
exhibit power-law instead of logarithmic singular behaviour due to anomalous fluctuations
of the finite-time Lyapunov exponents [29]. Here we report a similar observation in the case
of coupled strange nonchaotic attractors.

Fluctuations of finite-time Lyapunov exponents is a typical feature of chaotic systems,
but in some nonchaotic systems the Lyapunov exponents fluctuate as well. To this class
belong strange nonchaotic attractors (SNAs) that have a negative maximal Lyapunov expo-
nent, but a complex fractal structure in the phase space (see, e. g., Ref. [92]). The fluctuations
of finite-time Lyapunov exponents are present in SNAs [92], but they are much more corre-
lated than in chaotic systems. We demonstrate below that this leads to a weaker singularity
in the Lyapunov exponents’ dependence on the coupling.
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Figure 3.7: The Lyapunov exponents in coupled strange nonchaotic attractors in natural coordinates
(a) and in a log-log representation (b). The dashed line in (b) has a sl@e 1

We numerically studied two coupled quasiperiodically forced maps having strange non-
chaotic attractors, using

f(u) = 2.5tanKu)|sin(wt + ¢)|, (3.26)

wherew = (v/5—1)/2 is the frequency of the quasiperiodic driving. The model (3.26)
has been studied rigorously in Ref. [50, 67]. The results are presented in Fig. 3.7. The
dependence of the Lyapunov exponents on the coupling has a singularity, but this singularity
contrary to Eq. (3.12) is a power law, with a power close t8.1A detailed theory needs a
correct account of nontrivial correlation properties of the SNA.

3.4.2 Delay Differential Equations

Our theory suggests that the effect of coupling sensitivity of chaos results from the cou-
pling of fluctuating systems alone. It seems therefore natural to expect that the loga-
rithmic singularity can also be found for coupled continuous-time systems. Furthermore,
DAIDO observed the effect of coupling sensitivity of chaos not only for coupled one-
dimensional maps, but also for two-dimensional discrete-time maps [28]. Here we give nu-
merical evidence that the logarithmic singularity is also observed in infinite-dimensional and
continuous-time systems. As an example we study a system of two coupled one-dimensional
delay differential equations. A delay differential equation has an infinite number of Lya-
punov exponents, and for large delays usually a finite number of exponents is positive. The
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Figure 3.8: The Lyapunov exponents in the coupled lkeda equations, in natural (a) and scaled (b)
coordinates. Open circles and open squares: the splitting of the positive Lyapunov exponent; open
triangles and open rhombs: the splitting of the zero exponent; crosses and stars: the splitting of the
closest to zero negative exponent.

system we study reads

duét(t) _ f(ul(t), Ul(t — r)) + S[Uz(t) - Ul(t)] )
d“dZt(t) = f(up(t), Up(t — 7)) +e[u(t) — Ua(t)],

where
f(u(t),u(t—r)) = —u(t) +asinu(t — )

corresponds to the Ikeda equation, describing an optical resonator system [60]. The parame-
ter values were chosen to be- 3.0 andr = 5.0. We integrated the coupled Ikeda equations
together with the linearized equations, using the fourth order Runge-Kutta routine.

The results are presented in Figs. 3.8(a,b). For the chosen parameters, the uncoupled
Ikeda system has one positive and one zero (due to invariance to time shifts) Lyapunov
exponent, all other exponents are negative. In the coupled system the two former zero expo-
nents (the third and the fourth ones) are not affected by the coupling sensitivity: one expo-
nent remains exactly zero, changes of the other one are hardly seen for small couplings. We
attribute this to the fact that the zero Lyapunov exponent in an autonomous system does not
fluctuate. The other Lyapunov exponents (the positive and the first negative ones), however,
show the logarithmic singularity.

Further numerical simulations revealed that the Lyapunov exponents of coupled Lorenz
systems (see Sec. 2.3.2) of ordinary differential equations also show the logarithmic singu-
larity. Together, our simulations corroborate the conjecture that the coupling sensitivity of
chaos is a general phenomenon of coupled fluctuating systems.
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3.5 Random Walk Picture

3.5 Random Walk Picture

The origin of the logarithmic singularity can be understood by a qualitative considera-
tion [113, 3]. For simplicity we assume; = A; = 0 ando? = 02 = 6 >> ¢, leading to
the (Stratonovich) model

dW;t(t) = o1 ()W (t) 4 [wa(t) —wy ()],
dezt(t) = 672(t)Wa(t) + [y (t) —wa(t)]
with
@) =0, GHOHW) =285 -1).  ije{L2}.

When rescaling — t /o2, we have to rescalg — o because of thé-correlation. Dividing
by 62 we obtain

dwy(t) €
dWT(t) = Za(t)wa(t) + ?[WZ('[) —wi(t)], (3.27)
dzt = Z2(O)wa(t) + —5 [wa (t) —wa(t)]

Since the amplitudes of the noise proceggesare of order one ang)/ 2 < 1, the coupling
in the first equation of (3.27) only influences the dynamica/pff wa ~ c?wy /e >> wy. In
this case the influence of the coupling on the dynamiag,dh the second equation of (3.4)
is small. The opposite situation occursaif ~ oW, /e > W,. Thus the coupling leads to
effective equalization ofv; andw, only if the system reaches the lines = 62W1/8 and
w; = oW, /e in phase space, as illustrated in Fig. 3.9(a).

(b)

Vo

£ 2/In,

Figure 3.9: A sketch of the perturbation dynamics in coupled systems. Curly lines show the random
walk not influenced by coupling; straight arrows demonstrate the effect of coupling.

Vi
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3 Scaling of Lyapunov Exponents

For logarithmic variables; » = Inwy > the model (3.27) is transformed to

dvét(t) — il(t) + iz <eV2(t)7Vl(t) _ 1) ,

& 3 (3.28)
2\Y) _ ~ £ (@nt)—va(t) _
ot ZZ(t>+ o2 (e 1) :

Now the coupling in the first equation only influences the dynamicsiof v, ~
v1+ |In(e/c?)|, and vice versa. Thus the dynamics of the system is restricted to a strip
of vertical and horizontal width [In(e/c?)|, see Fig. 3.9(b). Due to the additive noise
processes in model (3.28), the dynamics between the reflections correspond to a two-
dimensional random walk. The average time to reach the boundary from the middle diagonal
is [In(e/0?)]?/5? [38]. The reflections introduce a drift in the direction of growing, the
contribution of each reflection to the way travelled due to this driftrige /62)|. Thus the
mean drift velocity (corresponding to the largest Lyapunov expoigris ¢2/|In(e/c?)],
which is in perfect agreement with our theoretical result, Eq. (3.12).

3.6 Summary and Perspectives

In this chapter we used the Langevin approach to obtain statistical properties of the Lya-
punov exponents of weakly coupled dynamical systems. For the simplest system of two
coupled stochastic equations it is possible to obtain an analytical expression for the largest
Lyapunov exponent, for different values of parameters (coupling, Lyapunov exponents of
uncoupled systems, fluctuations of finite-time Lyapunov exponents). The logarithmic sin-
gularity, first discovered by BIDO, is shown to exist even if rather different systems are
coupled, provided their Lyapunov exponents coincide. We also gave a qualitative expla-
nation of the effect, based on the interpretation of the perturbations’ dynamics as coupled
random walks.

Numerical simulations of a system with weaker stochastic properties (strange non-
chaotic attractor) showed the limits of the Langevin approach. We found a power-law sin-
gularity, possibly due to existence of long correlations in the dynamics of perturbations.

An extension of the stochastic model to three coupled identical systems as well as nu-
merical simulations led to the asymptotic result [113]

4 o2 €

for — —0.

A~
M 3In(e/0?)] p

Together with the results for the Largest Lyapunov exponent of weakly coupled CMLs [75,
22], it can be summarized that the coupling sensitivity of chaos is a general phenomenon of
coupled fluctuating systems.

An interesting consequence of the coupling sensitivity of chaos is found in the context of
Anderson localization in disordered systems. The localization length is given by the inverse
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3.6 Summary and Perspectives

of the smallest positive Lyapunov exponent (see, e.g., Ref. [25]). The site-by-site coupling
of two chains of Anderson maps leads to/dlthe| dependence of the Lyapunov exponents
that is in first order also found for the localization length. Coupling two disordered solids
thus leads to a substantial increase of the localization length [115].

Lyapunov exponents are very hard to estimate from experimental time series. It is there-
fore difficult to directly observe the rather small effect of coupling sensitivity in experi-
ments. The coupling dependence of the localization length, however, may be observable via
its influence on transport coefficients like the electrical conductivity.
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4 Avoided Crossing of Lyapunov Exponents

This chapter deals with an effect that follows from the coupling sensitivity of chaos stud-
ied in the previous chapter. Consider several subsystems (e. g., maps or systems of ordinary
differential equations) depending on one or more parameters. If the parameters of the sub-
systems are randomly chosen, the Lyapunov exponents of the uncoupled subsystems will in
general be different. It may be, however, that some subsystems have nearly equal Lyapunov
exponents. If we now introduce weak coupling between the subsystems, the coupling sensi-
tivity sets in such that the spacing between Lyapunov exponents that are close to each other
without coupling increases dramatically.

It will be shown by means of numerical simulations that this effect leads to phenomena
which are qualitatively similar to, but quantitatively different from the well-known effect of
energy level repulsion in guantum systems. Basing on the results of the previous chapter, an
approximate formula for the distribution of spacings between Lyapunov exponents will be
derived. Some of the results of this chapter have been published in Ref. [4].

4.1 Lyapunov Exponents and Energy Levels

4.1.1 Numerical Evidence for Avoided Crossing

Our starting model is a system bf symplectically coupled standard maps which are, in
general, different:

li(t+1) =1i(t) + Kising(t 6 (t
( ) =1i(t) sin N{ }{%sm (1)), )

Gi(t+1)=6(t)+i(t+1), ie{l1,...,N}.

Herel;(t) and 6;(t) are the 2-periodic state variables at siteand timet, ande serves

as the coupling parameter. The coupling can be global if the sum on the r.h.s. is over all
elements in the ensemble; in this ca¥d j} = N — 1. In the case of local coupling in a
one-dimensional periodic lattice, the sum is over nearest neighbourd/dngl = 2. The
parameter&; of all systems are, in general, different from each other, their random distri-
bution defines disorder in the model. Below we take all paramitensthe region of strong
chaosK; > 7. The standard map used in (4.1) is the basic model of Hamiltonian chaos [73],
it describes, in particular, a periodically kicked rotator.
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4 Avoided Crossing of Lyapunov Exponents

The Lyapunov exponents are calculated with standard methods (see App. A.1) as the
logarithms of the eigenvalues of the limiting matrix

imPOTPOIY® . Py = [3(0), 4.2)

t—oo
T=

whereJ(t) is the Jacobian of the mapping (4.1) (see Sec. 2.1.2). Due to its symplecticity, a
single standard map has (for chaotic trajectories) one positive and one negative Lyapunov
exponent of the same absolute value which depends on the pardmeter

To demonstrate the avoided crossing of Lyapunov exponents, the maps in Eq. (4.1) are
now considered as depending on a common parametgp, 1] according to

Ki =Ki(n) =Ki(0) + n[Ki(1) — Ki(0)].

The parameterk;(0) andK;(1) are random numbers uniformly distributed in the interval

7 < K; < 10. We present in Fig. 4.1 the results of numerical calculations of the Lyapunov
exponents of a particular realization of a system (4.1) of six nearest-neighbour-coupled
standard maps. In Fig. 4.1(a), the six positive Lyapunov exporigits 1, ..., 6) are shown

as functions of the common parametgefor the case = 0, i.e. without coupling. As can

be expected for independent Lyapunov exponents, many crossings are observed. This is
no longer the case when a weak nearest-neighbour coupliaglQ8) is introduced, as

can be seen from Fig. 4.1(b): the crossings are avoided, a behaviour which is well-known
for energy levels of quantum-mechanical systems. Note, however, a quantitative difference:

0.5 1.
N

Figure 4.1: Lyapunov exponentg; (i = 1,...,6) versus parametey (see text) for six standard
maps with parametets;(n). (@) Without coupling crossings of Lyapunov exponents are possible.
(b) Crossings are avoided when nearest-neighbour coupling with coupling parameted—2 is
applied. The dashed lines correspond to avoided crossings of only two coupled maps, see text.
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4.1 Lyapunov Exponents and Energy Levels

since the Lyapunov exponents are calculated from the eigenvalues of a product of random
matrices, the avoided crossing is already observed for extremely small (in absolute value)
off-diagonal elements of the single matrices.

A theoretical explanation for this strong repulsion of Lyapunov exponents will be dis-
cussed below, here we want to describe further numerical experiments showing that the
picture above is quite universal. A qualitatively similar pattern of avoided crossings has
also been obtained for a lattice of standard maps with global coupling. We have observed
it also for dissipative systems, e.g., flrglobally coupled skew Bernoulli mapk with
parameters; € (0,1) defining the location of the discontinuity (see Eq. (2.4)),

=z

5

N—lJ

Ui(t+1) = fi(ui(t)) + [fi(uj() = fi(u®)],  Te{l,...,N}. (4.3)

1

Another dissipative system we studied is the Ikeda map for a complex ampit(ue to
be confused with the Ikeda delay differential equation studied in Sec. 3.4.2),

id

E(t+1) =a+bE(t)exp <ic — m

) . i=v-1.

which describes a chaotic regime of light propagation in a ring cavity with a nonlinear el-
ement [59]. Coupling such systems can be achieved by overlapping the light fields (see,
e.g., the experiments in Ref. [102]). Below we describe the Lyapunov exponents in coupled
Ikeda maps, where the disorder is due to different values for the parardetdrthe dif-

ferent maps, whereas the other parameters are kept coretarit,p = 0.9, c = 0.4). The

Ikeda map with these parameters has one positive and one negative Lyapunov exponent; we
follow only the statistics of the positive Lyapunov exponents.

4.1.2 Energy Levels in Quantum Systems

At this point a very brief review of the energy level statistics in quantum systems (e.qg.,
large atomic nuclei) is necessary to understand our line of approach. For details the reader
is referred to Refs. [53, 54, 77, 99].

The historical starting point is the observation of an avoidance of small spacings be-
tween adjacent energy levels in complex quantum systems. It was the ideaGofE®/
to approximate the matrix elements of the Hamiltonian by random numbers, such that the
energy levels correspond to the eigenvalues of large random matrices

where theh;; are Gaussian distributed, and the symmetry propertiesddpend on certain
symmetries of the quantum system. The main interest focuses on the distribution of the
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4 Avoided Crossing of Lyapunov Exponents

level (or eigenvalue) spacing&, or their normalized versiors= §E/ (SE) . For randomly
chosen energy levels (or diagonal random matrices) the normalized spacings are distributed
according to the Poisson distribution, which has the probability density

p(s)=¢e>. (4.4)

For nonintegrable quantum systems (or nondiagonal random matrices), however, the spac-
ings are distributed according to the so-called Wigner distribution, whose exact form de-
pends on the symmetries of the system. For time reversal invariant systems with integer
total spin (or real symmetric random matrices) the Gaussian orthogonal ensemble applies.
In this case the probability density has the form

p(s) = gse‘”sz/“. (4.5)

While small spacings are possible in the Poisson distribution, they are avoided in the Wigner
distribution. In the last two decades it has been discovered that the avoidance of small energy
level spacings is a manifestation of quantum chaos (see, e.g., Refs. [54, 99]).

Estimating the probability density from a given set of samples is no easy task. Espe-
cially when the number of samples is small, it is much easier to estimate the cumulative
distribution function (CDF)

5(2) — Prob(s < 7) /0 *p(s)ds.

The CDF of the Poisson distribution can easily be calculated from the probability den-
sity (4.4),

and for the Wigner distribution (Gaussian orthogonal ensemble) we calculate from the den-
sity (4.5)

®s(2) =1—e /4,

For very smallz we can expand the exponentials and obtain in first oggdér) ~ z for the
Poisson distribution ands(z) ~ z° for the Wigner distribution. The simplest way to esti-
mate®s(z) from a set of sample&z,}, n € {1,...,N}, is to sort the samples by increasing
magnitude f <z, < --- < zy) and to usebs(z,) = n/(N + 1) as the desired estimate, pos-
sibly in connection with interpolation (see, e.g., Ref. [41]). This method is used throughout
this chapter.

44



4.1 Lyapunov Exponents and Energy Levels

4.1.3 Distribution of Lyapunov Exponent Spacings

Now we demonstrate that the consequence of the Lyapunov exponent repulsion is a particu-
lar statistics of Lyapunov exponent spacings in disordered systems of the type (4.1) or (4.3).
We performed the numerical experiment with different kinds of coupled maps as follows.
First, we fixed the system siZ¢ and the expectation valug of the coupling constant.
Then, for each randomly chosen set of parameters (we used uniformly distributed param-
etersK; € [7,10] for the standard mapsy € [0.2,0.3] for the skew Bernoulli maps, and

d; € [7.5,8.5] for the Ikeda maps) and coupling constantexponentially distributed ac-
cording to the probability density(e) = exp(—e/eo) /o With expectation valuey = 10~°

for the standard and skew Bernoulli maps= 10* for the Ikeda maps), we determinid
Lyapunov exponents, which correspondd\te- 1 spacingsy; = A; — 1. These spacings

are considered d$ — 1 samples of a random distribution (for the standard and Ikeda maps
only the positive Lyapunov exponents are considered). Performing calculations for many
sets of parametets; (or g;, or di) ande, we obtain a representative statistics for the Lya-
punov exponent spacings, see Fig. 4.2 where the distribution funaficr) = Proba < 2)

is shown.

Examining Fig. 4.2 we see that the distribution of spacings of coupled maps has a very
strong depletion for smaft, not only compared to the Poisson distributién~ z (which
occurs in the absence of coupling), but also compared to the Wigner distribution for the
Gaussian orthogonal ensemble of random matrices, for whishz? (see Sec. 4.1.2).

1.0 e I T R
0.8 - ’ s
< 06 .
E/q i — 2standard, uncpd. | |
oy 2 standard
€ 04 74 ~- 10standard, NN | |
L i -~ 10 standard, glob. |
L ;o --- 2lkeda _|
0.2 Ty - 20 Bernaulli, glob.
00— L |
0.0 1.0 2.0 3.0

z

Figure 4.2: Numerically estimated cumulative distribution functiobg(z) for the normalized (in
such a way that the mean spacing is 1) Lyapunov exponent spatiofydifferent systems (Stan-
dard and Bernoulli maps with average coupling paramgter 10-°, Ikeda maps witheg = 10~4)

with different types of coupling (uncpd.: uncoupled, NN: nearest neighbour coupling, glob.: global
coupling).
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4 Avoided Crossing of Lyapunov Exponents

0.0 T

In ®0(2)

o~ N 2 standard
P /¢ |--- 10 standard, NN
e --- 10 standard, gloh.
- / - 2 lkeda

-10.0+ --- 20 Bernoulli, glob
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Figure 4.3: Cumulative distribution functions of Fig. 4.2 in scaled coordinates, cf. Eq. (4.8).

To resolve this strong depletion we present the same data in Fig. 4.3 in scaled coor-
dinates. The scaling is motivated by our theory (see Sec. 4.2 below) and it shows that the
distribution function is exponentially small for small spacinds(z) ~ exp(—1/z). Note
also that although the distribution functions are qualitatively similar for different systems,
they do not collapse onto a single curve. This is an indication for the nonuniversality of the
Lyapunov exponent spacing distribution.

4.1.4 Relation to Random Matrix Theory

As is clear from Eq. (4.2), the problem we consider can be formulated as a problem of
random matrix theory (with the usual modelling of chaotic fluctuations with random ones,
see Sec. 2.4). Namely, we are interested in the eigenvalues of infinite products of random
matrices, having both quenched (time-independent) disorder and dynamic (time-dependent)
noise. The quenched randomness comes from the distribution of the parameters in the dis-
ordered ensemble, e.g., from the distribution of paraméferd the standard maps. The
dynamic noise comes from fluctuations due to the chaotic evolution (e.g., in the standard
map the local Jacobiaht) depends on the chaotic variableando).

To be more specific, we consider a systemlalobally coupled one-dimensional maps
as given by Eq. (4.3). If we replace the local derivatifga(t)) by stochastic variables
exp(Ai +&(t)), wherea; is the Lyapunov exponent of the single ma@ndé;(t) accounts
for the fluctuations of the local expansion rates, the Lyapunov exponents of the system of
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4.2 Theoretical Approach

coupled maps are related to the eigenvalues of the matrix product

(1—g)ettal)  eehtbl ... e gt
tl_ll) ﬁe/\l‘f‘él(t) (1— g)e/\z—?—éz(t) e NL_leAN—l-ﬁN(t)
e ettam et (1 gt

Here, the parameteks A;, and the properties of the stochastic varialesepresent the
quenched disorder, whereas the dynamic noise is given by the time-dependent values of
the stochastic variables(t). We again stress that the eigenvalues of the matrix product are
already influenced by very small absolute values of the off-diagonal elements (i.e., very
small values ot), which is not the case for the eigenvalues of a a single matrix.

The two limiting cases, when our problem can be reduced to standard ones, are clear.
In the case when the quenched disorder is absent (or if we consider just one realization of
parameters of the interacting chaotic systems), we have a standard problem of the calcu-
lation of Lyapunov exponents for a product of random matrices [25]. Another well-known
situation appears if the dynamic noise is absé(tt)(= 0): in this case all the matrices of the
product are equal and the problem reduces to the calculation of the eigenvalues of this one
matrix (see Sec. 2.1.2). This problem has been widely discussed, recently mainly in the con-
text of quantum chaos (see, e.g., Ref. [53]). For chaotic systems the fluctuations can vanish
only in exceptional cases (e.qg., for the skew Bernoulli map this happens for the symmetric
situationa; = 1/2 only; for the standard map in the chaotic state and for the Ikeda map the
fluctuations are always finite). Another limiting case is that of uncoupled system®Y:
here we have a product of diagonal matrices with both quenched and dynamic randomness,
and the Lyapunov exponents simply follow the statistics of the quenched disorder.

4.2 Theoretical Approach

4.2.1 Hyperbolic Approximation of Coupling Sensitivity

Similar to the case of quantum-mechanical systems (see, e.g., Ref. [99]), the essential qual-
itative and quantitative characteristics of the Lyapunov exponent repulsion can be acquired
from the consideration of two coupled dissipative chaotic systems. We demonstrate this with
the following numerical experiment: we calculate the Lyapunov exponents for two coupled
maps of Fig. 4.1, switching off the interaction with other systems. The results for two cross-
ings are shown as dashed lines in Fig. 4.1. One can see that the behaviour of the Lyapunov
exponents remains at least qualitatively the same.

Daido [26] has first shown that two coupled identical chaotic systems experience a sin-
gular repulsion of the Lyapunov exponentss |Ine|~1, wherea is the difference between
the Lyapunov exponents ards the coupling parameter (coupling sensitivity of chaos). In
Ch. 3 a general expression for the coupling dependence of the first and second Lyapunov
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4 Avoided Crossing of Lyapunov Exponents

exponents of two coupled systems has been derived by means of a stochastic model. From
Egs. (3.10) and (3.16) we obtain the following expression for the differarfoetween the
Lyapunov exponents of two coupled systems,

Ky ni(e/6?) +Kq.yi(e/c?
A(l] &, 0) = e— 11 /K|)(j/612;“|( / )7

(4.6)

wherecs? is the variance of the finite-time Lyapunov exponént, §A /262 is proportional

to the differenceSA = A; — A of the “bare” (i. e., without coupling) Lyapunov exponents

of the interacting systems, aidare the modified Bessel functions [1]. Although Eq. (4.6)
was obtained in the continuous-time Langevin approximation where the fluctuations of the
Lyapunov exponents are modelled by Gaussian white noise processes (thus discarding all
temporal correlations), it very well describes the coupled standard maps (Fig. 4.4) as well
as other chaotic systems [113]. Because expression (4.6) is rather inconvenient for further
analysis, we use a hyperbolic approximation for it,

262 \?
%(5A)2+<In(;;62)> . 4.7)

The first term on the r. h. s. corresponds to the lignit— o, while the second term is based
on an expansion of Eq. (4.6) férnn = 0 and smalk/c? (see Eq. (3.12)). From Fig. 4.4 one
can see that this approximation is rather good.

Using (4.7) we can show that in a disordered system the probability to observe tiny val-
ues ofa is exponentially small. It is clear that only small valuessaf ande can give small
spacingsi. If we assume thatA ande are independent random numbers with constant den-
sities near zero, then the distribution functi®g(z) = ProbA < z) can be approximated by
the integral over the are®(z) = {(8A,¢) : (6A)%+[206%/In(e/0?)]? < 72}, leading to

u@~ [[, 40
A(2)
262
_ / ( (5A>2> d(5A)
n/2 2
:2022/ exp(— 20 )co&xda,
—x/2 ZCOSox

where we have substituteth = zsino in the last step. For&/z > 1 only the region
arounde = 0 contributes, such that we can use the approximatigesse ~ 1+ a?/2 in
the exponent and cos~ 1 in the integrand. Integrating ovéro, ) (the contribution of
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Figure 4.4. Dependence of the Lyapunov exponent differencen the differenceSA between

the “bare” Lyapunov exponents for two coupled standard maps with coupling parametsd>:
comparison of numerical results (circles) with the analytical expression (Eg. (4.6) with numerically
calculated values fos?, solid line) and the hyperbolic approximation (Eq. (4.7), dashed line). The
dotted line depicts the Lyapunov exponent difference without coupling|5A|.

the tails is negligible) gives the exponential depletion at small spacings,

2\ o 2,2
D, (2) Nzozzexp<22) /mexp(zcza >da

~ 2\/Ez3/zexp<—2—zz> . (4.8)

The numerically calculated cumulative distribution functions are in conformity with this
result, as can be seen from Fig. 4.3.

The theoretical analysis above is, strictly speaking, restricted to the case of two inter-
acting chaotic systems. Nevertheless, we expect that it works at least qualitatively for large
ensembles as well, because we have seen that the Lyapunov exponent repulsion is a “local”
event, where only the two chaotic subsystems whose Lyapunov exponents are close to each
other are involved (recall the dashed lines in Fig. 4.1).

4.2.2 Distribution Functions for Special Cases

For just two coupled systems and given distributions of the parameters the exact form
of the CDF can be calculated for certain limiting cases. First we consider two uncou-
pled systemsg(= 0) with Lyapunov exponenta, , independently chosen from the uni-
form distribution on a real interval of length The Lyapunov exponent spacing is simply
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4 Avoided Crossing of Lyapunov Exponents

A = |8A| =|A1— Az|, and we can calculate the CDF by direct integration,

®9(2) = 2{ 1-2]. (4.9)

For smallzwe have in first orde®?(z) ~ z, a linear increase as for the Poisson distribution.
Now we couple the two systems with a fixed coupling parametand choose the

Lyapunov exponenta; » from the same uniform distribution as before. We assume that the

variances? does not vary much, such that we can consider it as a constant parameter. We

can calculate the new CDF from Eqg. (4.9) by replacdity the inverse functiofsA | (A) of

the hyperbolic approximation (4.7),

_ 2\/22 —[262/|In(e/c?)|? B 7 —[26%/|In(e/c?)|)?

- 5 (4.10)

®4(2)

For largez we haved}(z) ~ #{(2).

In the other limit we now conside¥A = 0 ande distributed according to the exponen-
tial distribution with expectation valug. If we again assume that the variansecan be
considered as constant, we can calculate the CDF by substituting the inverse fa(sion
of the hyperbolic approximation (4.7) (with = 0) in the CDF®, (z) = 1— exp(—2z/¢p) of

1O P T T T T T
; -
; -

(2

|
I
I
L | |

080" 0.05 0.10

Figure 4.5: Cumulative distribution functions (see tex®{(z) (thin solid line), ®1(z) (dashed
line), and®?(z) (dot-dashed line) for parameter valles- 0.11, 6% = 0.113, andgp = 10°°. Also
shown is the numerically estimated CDF for two coupled skew Bernoulli maps with parameters
randomly chosen from a uniform distribution[th2, 0.3] ande randomly chosen from an exponential
distribution with expectation value; = 10~° (5000 spacings). Note that the spacingsire not
normalized (in contrast to Fig. 4.2).
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the exponential distribution,

2(2) :1—exp<—6—2exp(—2¥;2>) : (4.11)

€0

For 262 /z>> 1 the second exponential is small. Expanding the first exponential, we obtain
in first order the exponential depletion (see Eq. (4.8))

o2 202
P2(2) ~ — exp<——) :

In Fig. 4.5 the CDFscDg’l’z(z) are shown for parameter values that apply to skew
Bernoulli maps withg; € [0.2,0.3] (see Sec. 2.1.3). The comparison with the numerically
estimated CDF for two coupled skew Bernoulli maps showsdi}ér) and%?(z) give rea-
sonable approximations for large and small values oéspectively. The numerically esti-
mated CDF for uncouplea & 0) skew Bernoulli maps perfectly follows the approximation

®(2).

4.3 Summary and Perspectives

Concluding, we have characterized numerically and theoretically the statistics of the Lya-
punov exponents in disordered chaotic systems. Its main feature is the exponential deple-
tion of the distribution function at small spacings between the exponents. This follows di-
rectly from the effect of coupling sensitivity of chaos, according to which the repulsion
between the Lyapunov exponents is extremely strong. This repulsion manifests itself also in
the avoided crossing of Lyapunov exponents, considered as dependent on a parameter. We
have demonstrated that the effects of level repulsion and avoided crossing are observed for
chaotic systems of different nature: Hamiltonian and dissipative ones. Also the coupling can
be of different form; in particular, qualitatively similar patterns of avoided Lyapunov expo-
nent crossings and of the Lyapunov exponent spacing distribution function are observed for
global and nearest-neighbour couplings in a lattice.

Our framework of consideration was motivated by the analogy to the problem of level
statistics in quantum chaos and complex quantum systems [54, 99, 53]. Qualitatively, the
behaviour of Lyapunov exponents is quite similar to that of energy levels in quantum chaos.
The main difference is that for disordered chaotic dynamical systems we have two sources
of randomness: one quenched due to the disorder and one dynamic due to the chaotic fluc-
tuations. Thus, in contrast to the problem of the distribution of the eigenvalues of a single
random matrix, we face the problem of the distribution of the eigenvalues of a product of
random matrices. There are two limiting cases when these two problems are equivalent. One
is the case without coupling, where the Lyapunov exponents remain independent random
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4 Avoided Crossing of Lyapunov Exponents

numbers and obey the Poisson distribution. The other one is the case of vanishing fluctua-
tions of the local Lyapunov exponents (no dynamic randomness); here we have one random
matrix whose eigenvalues give the Lyapunov exponents.

The problem we studied here should not be confused with the dependence of the Lya-
punov exponents of integrable Hamiltonian systems on a small perturbation that destroys
integrability. For those systems, which can also be related to products of random matrices,
a power-law behaviour of the Lyapunov exponents has been found [13, 85]. In our case,
however, the subsystems are already nonintegrable without coupka@).

Concerning an experimental verification of our results, the same problems as for the
coupling sensitivity of chaos are encountered, i.e., it is very difficult to measure the Lya-
punov exponents of an experimental system directly. Therefore one has to look for indirect
effects on measurable quantities. A possible candidate is the electrical conductivity in quasi-
one-dimensional disordered solids, which depends on the Lyapunov exponents in a nontriv-
ial way via the Landauer formula [70]. Further research, however, is needed to understand

possible consequences of the avoided crossing of Lyapunov exponents on the conductivity
in such systems.
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5 Synchronization of Extended Systems

Spatially extended dyamical systems have been introduced in Ch. 2. They typically exhibit
local nonlinear dynamics as well as spatial coupling. The latter often consists of local diffu-
sive coupling, but long-range or global couplings are also possible. In this chapter, however,
we will limit ourselves to local coupling.

Here we consider two spatially extended systems that are additionally coupled to each
other in a bidirectional way as schematically shown in Fig. 5.1. Two different coupling
parameters apply. The local coupling within a single extended system is described by the
parameteg. For continuous-space systems (partial differential equations) this is typically
the diffusion constant. The coupling between the two extended systems is described by the
parametery. Synchronization between the two extended systems occurs in dependence on
y for a fixed value ot.

There are several works showing the possibility of synchronization of specific spatially
extended systems with different coupling schemes [5, 69, 86, 62, 16, 63, 37]. This chapter,
however, is concerned with the general nature of the transition to synchronization, i.e., the
dependence of the synchronization error on the coupling strength.

After an overview of the general framework and our stochastic model, first numerical
results for the synchronization of coupled map lattices are presented that indicate the exis-
tence of two different types of the synchronization transition. These two types of transition
are then studied in detail by means of numerical simulations. Finally, the introduction of a
discrete growth model allows an approximate numerical determination of the critical expo-
nents.

——o oo
oo o o

Figure 5.1: A sketch of two coupled spatially extended systems, e.g. coupled map lattices. Besides
the local dynamics at each lattice site, there is interaction between neighbouring sites within one
system (coupling parameteyas well as interaction between corresponding sites of the two systems
(coupling parametey).
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5 Synchronization of Extended Systems

5.1 General Framework

5.1.1 Coupled Spatially Extended Systems

A spatially extended system is typically given either as a coupled map lattice (CML) or as
a partial differential equation (PDE), see Sec. 2.2. Although our numerical simulations are
limited to CMLs, the general synchronization mechanism is the same for PDEs.

A typical model for bidirectionally coupled PDEs is given by

6U1(;tx7t) =f(ur(x1)) +ebuy(x,t) + yCluz(x,t) — uz(x.1)],
(5.1)
auZa(tX,t) = f (Ua(X,t)) + eBup(X,t) + yClug (X, t) — Up(x,t)],

whereuy > = (u(f%, .. .,u(ldz))T € RY are the state vectorse R is the continuous time vari-

able,x € [O,L) is the continuous space variablec R™ is the system lengtlz, is the dif-
fusion constant (the Laplaciah acts componentwise); is the coupling parameter, and
C € R%d js the coupling matrix (see also Secs. 2.2 and 2.3). Periodic boundary conditions
ui(X,t) = ui(x+L,t) are assumed.

For studying synchronization, the difference

W(X,t) = ug(X,t) — ua(x,t)

plays a crucial role. We use the linear expansiori (@f,) aroundu; to obtain (with the
Jacobian) of f)

f(ug) — f (U2) = I (up) (uz — ) + O(|jug — uz|%).
For a small perturbatiow(x,t) of the synchronized state we then obtain in first order

ow(x,t)
ot

= [J(u1(X,t)) — 2yC]w(Xx,t) + eAw(x,t). (5.2)

Note thatw is used for the actual differeneg — u, (that can be of the order of the »)
as well as for a small perturbation of the synchronized state in approximate models of the
perturbation dynamics.
In the case of CMLs, the spatial variables {0,...,L — 1}, the system length € N,
and the timd € Z are discretized. The discrete Laplacian in one spatial dimension reads

Au(x,t) = u(x—1,t) —2u(x,t) + u(x+1,t).

For simplicity, we use the same symbal$, A for both continuous and discrete systems.

54



5.1 General Framework

The typical model for scalar state variables(x,t) is given by

U (x,t) = f(ur(x,t)) +eAf(u(xt)),
ur(X,t+1) = Ga(x,t) + y[02(x,t) — Ga(x,1)],
(5.3)
Ua(x,t) = f(uz(x,t)) +eAf(u2(xt)),
Up(X,t 4 1) = Ua(X,t) + 7[Oa (X, t) — Ua(X, )],

where agaire is the diffusion constanty is the coupling parameter, and periodic bound-
ary conditionsu; (x,t) = uj(x+L,t) are assumed. The discrete Laplacian acts orf {bg

to ensure that the variables are mapped to the interval which the map is acting on (see
Sec. 2.2). For the same reason the coupling between the two CMLs is applied to the inter-
mediate state variables. For a small perturbatiow(x,t) of the synchronized state we now
obtain in first order

W(x,t) = /(U (x ) w(x,t) + eA[f'(us (x 1)) w(x t)]

Wkt 1) = (1 29)(x.). &4

where the second equation is exact.

Similar considerations can be made in the case of unidirectional coupling, i.e., an au-
tonomous systern;(x,t) driving a response systenp(x,t) (see Sec. 2.3). For coupled
PDEs we then obtain

ow(x,t)
ot

= [J(ur(x,t)) — yClW(Xx,t) + eAw(x,t),
whereas for coupled CMLs we find

W(x,t) = f'(up(x,t))w(x,t) + eA[f'(up(x,t))w(x,t)],
WX, t+1) = (1—y)W(x,t).

Comparing these results with Egs. (5.2) and (5.4), we see that only the prefactor of
changes, which is confirmed by numerical simulations. In the following we will only con-
sider bidirectionally coupled systems. One should keep in mind, however, that the general
framework of the synchronization transition also applies to unidirectionally coupled sys-
tems.

5.1.2 Stochastic Model

We now introduce a stochastic PDE model for the synchronization error of both continuous
and discrete spatially extended systems (i.e., for both PDEs and CMLs). To this end, we
model the dynamics of the differene&x;t) by adding a cubic nonlinearity to the linear
terms in Eq. (5.2) and replacing the chaotic derivativel§ bf(x,t)) by a stochastic process
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5 Synchronization of Extended Systems

&(x,t) (see also Sec. 2.4). Furthermore, we only follow the perturbation in the direction
of largest growth and therefore use a scalar varialglet) (in contrast to the perturbation
vector in Eq. (5.2)). We then end up with the stochastic PDE [91, 93]

ow(x,t)
ot

:{qw+§u¢y-mwunﬁ}wan+fmmXo, (5.5)

which is the multiplicative noise equation (2.17) with an additional nonlinear tepmvyzw

that ensures saturation [ef] if p > 0. This accounts for the restriction that the synchroniza-
tion error|w| must stay of the order of the state variahlgs. The functiorc(y) is connected

with the transverse Lyapunov exponent (see Eq. (5.7) below). In analogy with the situation
for coupled low-dimensional systems (see Sec. 2.3) we write

c(y) = co+In(1—2y)

in the case of coupled CMLs and
c(y) =Co—2y

in the case of coupled PDEs. The constanis connected with the Lyapunov exponent of
a single (uncoupled) extended system (see Eq. (5.8) below). The Gaussian random process
&(x,t) satisfies

(E(xt) =0, (E(HEX ) =2075(x—X)3(t—t').

The variance @2 is connected with the magnitude of the fluctuations of local multipliers
of the single map. The field(x,t) stays positive fot > 0 if w(x,0) > 0 for all x. We shall
consider Eq. (5.5) as our general model although we will see below that it is not valid for
certain CMLs, in particular those consisting of discontinuous maps. By means of the Hopf-
Cole transformatiom(x,t) = In|w(x,t)|, Eq. (5.5) is transformed into (see also Sec. 2.4.2)

oh(x,t)
ot
which is the Kardar-Parisi-Zhang (KPZ) equation [66] for a growing and roughening inter-
face with an additional exponential term which (for> 0) preventsh(x,t) from growing
towards infinity (thus playing the role of a soft upper wall in the context of a growing inter-
face).

In Fig. 5.2(a) a snapshot of the synchronization ewet u; — up of coupled tent map
CMLs at a fixed time is shown. Singe< ¥, no overall synchronization is observed. It is
obvious, however, that the synchronization error is highly localized. Pldttinigp logarith-
mic coordinates reveals the connection with the roughening interface described by the KPZ
equation, see Fig. 5.2(b). Similar observations have been made for the Lyapunov vectors
of spatially extended systems [91, 93]. It should be noted, however, that Fig. 5.2 shows the
behaviour of the actual synchronization error, not its linear approximation.

= c(y) + eAh(x,t) + e[Oh(x,t)]? — p"™*Y 4 £(x,t), (5.6)
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Figure 5.2: (a) Snapshot of the synchronization erme= u; — up for coupled tent map CMLs

(L = 1024) with a coupling parametgr= 0.175 slightly below the criticaje. (b) Plotting|w| in log-
arithmic coordinates gives the profile corresponding to the roughening interface. The spatial profiles
of the state variables; , look qualitatively the same as the profile of a single tent map CML shown

in Fig. 2.2.

Synchronization is observed {fw|), (t) — 0, which is equivalent tgh), (t) — —oo.
In this case the saturating exponential term in Eqg. (5.6) can be neglected and we end up
with the usual KPZ equation. The average interface velocity gives the transverse Lyapunov
exponent [93],
AL =c(y)+e([Oh(xt)?),, (5.7)

where the average is over space and time after some transient phase. In the uncoupled case,
y = 0, we obtain the Lyapunov exponent of the extended systegn(which in general

cannot be calculated from the Lyapunov exponerdf the local dynamical systerh and

thus has to be estimated numerically). Therefore we can write Eq. (5.7) as

AL = Aext+In(1—-2y)

in the case of coupled CMLs and

AL = Aext— 2y
in the case of coupled PDEs. These equations determine the capsitndduced above,
Co = Aext+ & ([Th(X,1)]%), , - (5.8)
Settingx, = 0, we obtain the linear critical coupling parameter
Yein = % (1—e ) (5.9)
in the case of coupled CMLs and
Yol = 3 e (5.10)
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5 Synchronization of Extended Systems

in the case of coupled PDEs.

At this point a remark on finite-size effects is necessary. In Ref. [93] it has been shown
that for long enough averaging the finite-size dependence of the Lyapunov exponent of an
extended system is

Aext(L) — Aext(0) ~ L7 (5.11)

This allows one to obtain an estimate of the thermodynamic limit val(+e) by extrap-
olation. Eqg. (5.11) corresponds to the finite-size scaling of the average surface velocity of
the KPZ equation [71]. There are also scaling laws for the finite-time dependence of the
Lyapunov exponent prior to saturation [93, 71].

From the finite-size dependence A&y it follows that alsoi; andyin are subject to
finite-size effects. Using the relation (5.11) fag(L ) in the synchronization condition (5.9)
for coupled CMLs, we obtain (with a constat

Yelin (L) ~ } [1_ e*Aext(m)fb/L}

2
L1 — Aex(®)
~ [1—(1—b/L)e }
b o
R Yelin (o) + - o)

2L

For the finite-size dependence of the critical coupling parameter it follows

Ye.lin (I—) — Yclin (°°) ~ I—il; (5.12)

which is also obtained from the synchronization condition (5.10) for coupled PDEs. The
validity of the results (5.9), (5.11), and (5.12) for coupled CMLs is checked in Secs. 5.2.1
and 5.3.1 below by means of numerical simulations.

5.1.3 Critical Exponents and Universality Classes

In the following, we are interested in the synchronization transition of chaotic extended
systems. We will show that it resembles a continuous phase transition (see, e.g., Ref. [14]),
where the coupling strengthand the averaged absolute differeripe|) x; (averaged over
space and time after some transient phase) play the roles of the control and the order param-
eter, respectively. Without coupling £ 0) we have two individual systems. Starting from
different initial conditions, we havéw|) x; > 0. In the case of coupled CMLs we immedi-
ately see from Egs. (5.3) that fpr=1/2 the systems synchronizey(x,t) = ux(x,t)) after
one time step.

Our tasks will be to find the critical coupling strengthsuch that

>0 ify<w,
{0 S h
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5.1 General Framework

and to characterize the transition for different systems, i.e. to find the appropriate univer-
sality classes (see, e.g., Ref. [14]). For the latter task, the standard way to proceed is to
compute some of the critical exponents. Of interest in our case are

(W)ye ~ (e=7)P  for y<re,
Le~ (=™ for ySow,
Te~ (e—7)Y for v<,

t

-6

2

(IWhy (1) for y=1,

whereL. and T, are the correlation length and time, respectively. For the computation of
the exponentg, v, andv; an accurate knowledge of the critical coupling paramgteés
required. Therefore, we will make use of the last relation to determias the value of
which the best power-law scaling is obtained for.

In Sec. 5.2.2 below it will be argued that the synchronization transition is in the directed
percolation (DP) universality class for CMLs consisting of discontinuous maps. In that con-
text it will be useful to consider the densijtyof unsynchronized sites (corresponding to the
density of active sites in DP), which in the spatially discrete case is defined as

_card{x: [w(x,t)] > W}

p(t) 3

with some (small) threshobdy,. The scaling relations then read [49]

P ~(-7f  for y<r,
p(t) ~t7° for y=1.

It is not a priori clear that the exponents are the samegvibrand p; arguments will be
given in Sec. 5.4.2 below. A further scaling variable in the context of DP is the first passage
time 7, defined as the first timgw|), (t) (or alternativelyp(t)) becomes smaller than some
threshold. At criticality;r scales with the system siteaccording to [101]

T~ L% for y=1,

giving another way to estimatg. This scaling relation is not useful for systems with
depending on the system sizgas CMLs consisting of continuous maps, see below).

The critical exponents are not independent of each other. In particular, the scaling re-
lations§ = B/v; andv| = zv, hold [61]. The values of the critical exponents of a given
system can be used to decide which universality class it belongs to. In view of the following
results, we mention two universality classes.

1We denote the critical exponents by the symbols that are typically used in the context of directed percolation,
see, e.g., Ref. [61]
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5 Synchronization of Extended Systems

Multipicative Noise Equation

The first model (that applies to CMLs consisting of continuous maps, see Sec. 5.2.1 below)
is the multiplicative noise equation (5.5). It can be transformed into the Kardar-Parisi-Zhang
(KPZ) equation plus a nonlinear term, Eq. (5.6); we will therefore denote this type of tran-
sition as “KPZ-like”. While the critical exponents [9]

v, =1, 223/2

of the original KPZ equation in one spatial dimension are known exactly, this is not the case
for the additional critical exponentg (v, 5) of the multiplicative noise equation. Recent
estimates obtained byuUret al. from a direct numerical integration of the multiplicative
noise equation in one spatial dimension are [107]

B=170+005 v, =103+0.05 &=110+0.05 z=153+0.07.

The results fozandv, are consistent with the exact values of the KPZ equation. By scaling
arguments the relation, = 1/(2z— 2) has been shown [107]. Although®f&ioz and HvA
reported a valug = 1.50+ 0.15 in a later work [82] (see also Ref. [40]), the estimate of T

et al. seems to rely on more accurate data and is reproduced by our simulations in Sec. 5.3.1
below.

Directed Percolation

The second model (that applies to CMLs consisting of discontinuous maps) is directed
percolation (DP, see, e.g., Ref. [48]). We give a brief description of site DPHa {one
spatial and one temporal) dimensions consider a square lattice that is rotateél. thy 45
the following, the vertical (horizontal) direction represents space (time). Each site of the
lattice can either be active or passive. We start with a few active sites that are randomly
placed along a vertical line (corresponding to a spatial pattern at tin@). At every time
step, each of the upper and lower right neighbouring sites of an active site is activated with a
probability p that plays the role of the control parameter. There exists a critical yalsiech
that the process dies out fpr< pc and survives fopp > pc. A continuous phase transition
is found if the fraction of active sites is used as the order parameter. Directed percolation
is considered to be a general model for fluctuating extended systems with absorbing states.
The passive state is absorbing in the sense that a site cannot be activated if both its upper
and lower left neighbouring sites are passive.

Although the critical exponents are not known exactly even in one spatial dimension,
there exist very accurate estimates [61],

B =0.276486+0.000008 v; = 1.096854+ 0.000004
6 = 0.159464+ 0.000006 z=1.580745+-0.000010
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5.2 Two Types of Synchronization Transition

At the critical point a finite-size scaling relation is known [101] that in the language of the
synchronization transition reads

(W) (t) ~ L P/ g(t/L?). (5.13)

There also exists a field-theoretic description of DP similar to the multiplicative noise equa-
tion (5.5) introduced above (with > 0), but with a quadratic nonlinearity and a multiplica-
tive noise term proportional tg/w instead ofw [48]. Applications of DP include models of
epidemics and chemical reactions [48].

5.1.4 Previous Results

The stochastic model for the synchronization error and its connection with the KPZ equation
was suggested byiikovsky and KURTHS[91]. They did not, however, include a nonlinear
saturating term.

GRASSBERGERshowed by means of numerical simulations and heuristic arguments
that the synchronization transition of stochastically coupled cellular automata (i. e., systems
with discrete state variables) is in the DP universality class [49]. He further argued that
the synchronization of extended systems with continuous state variables (such as CMLSs)
generically corresponds to the KPZ equation with a nonlinear saturating term (see also
Ref. [48]).

BAaGNoOLI et al. studied unidirectionally coupled CMLs with an all-or-nothing type of
coupling [8]: at each time step, pairs of state variahlgx,t) anduy(x,t) are equalized
with a probabilityp. With p as the control parameter, a DP transition of the synchronization
error is found.

Finally BARONI et al. studied CMLs that are not directly coupled to each other, but
driven by the same realization of an additive noise pro¢éss) [10, 11]. From the results
of numerical simulations they concluded that the transition is KPZ-like for CMLs consisting
of continuous maps (such as tent or logistic maps), but DP-like for CMLs consisting of
discontinuous maps (such as Bernoulli maps). The DP-like transition was also found in the
case of continuous maps with a very strong nonlinearity.

5.2 Two Types of Synchronization Transition

5.2.1 Continuous and Discontinuous Maps

At this point we present first numerical results for different CMLs of moderate lehgth (
1024) to illustrate that there are two different kinds of the synchronization transition. More
exact numerical results and estimates of the critical exponents can be found in Sec. 5.3
below. We study CMLs consisting of skew Bernoulli maps (see also Sec. 2.1.3),

u/a ifu<a,

a)/(1—a) ifu>a, (5.14)

f:[0,1 — [0,1], u»—>{(u_
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Figure 5.3: Synchronization transition for CMLs consistinglof= 1024 tent (a) and Bernoulli (b)
maps, respectively, with parameter 1/2. The results shown are averages over 10 different initial
conditions and 50000 iterations (after a transient of 50000 iterations).

skew tent maps,

} u/a ifu<a,
f:[0,1] —[0,1], UH{(l_u)/(l_a) U a (5.15)
and logistic maps,
f:[0,1 — [0,1], u—aul—u). (5.16)

The skew tent and Bernoulli maps depend on a parametgl0,1); for a= 1/2 we obtain
the usual tent map and Bernoulli shift, respectively. The Lyapunov exponent of the single
map can be calculated analytically (see Sec. 2.1.3),

A =-alna—(1-a)ln(1-a).

For the logistic mapa € (0,4]. Fora = 4, the map can be transformed into the tent map
with a= 1/2; the Lyapunov exponent is therefore givenby- In2.

In Fig. 5.3 the averaged absolute differerige|), ; is plotted as a function of the cou-
pling parametey for CMLs consisting ol = 1024 tent and Bernoulli maps, respectively.
All the maps of a CML have the same parameter value1/2. Throughout this chapter,
“democratic” coupling £ = 1/3) is applied if not stated otherwise. Obviously, the transition
is of different form for the two examples, with exponefits- 1 for the tent map CMLs and
B < 1 for the Bernoulli map CMLs. A transition of the type shown in Fig. 5.3(a) is also
found for skew tentq # 1/2) and logistic maps, while a transition of the type shown in
Fig. 5.3(b) is also found for skew Bernoul& ¢ 1/2) maps.

In Tab. 5.1 results for the Lyapunov exponents and critical coupling parameters for
CMLs consisting of the maps described above are shown. Apart from the values for the
single-map Lyapunov exponent these results are based on numerical simulations. Recall
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5.2 Two Types of Synchronization Transition

Map a A Aext e lin Y

Tent 1/2 In2~0.6931 0.4340| 0.1760| 0.17605+=0.00005
1/3 | In3—(2/3)In2~0.6365 | 0.3644| 0.1527| 0.1527+0.0003

Logistic 4 In2~0.6931 0.3809| 0.1584| 0.1584+0.0001

Bernoulli | 1/2 In2~0.6931 0.6931| 0.250 | 0.2875+0.0001
1/3 | In3—(2/3)In2~ 0.6365| 0.6670| 0.2430| 0.280+0.0005

Table 5.1: Results for example maps with parametarsingle-map Lyapunov exponent (ana-
lytical), Lyapunov exponent of the CMUey (numerical), linear critical coupling parametgfin
(Eqg. (5.9)), actual critical coupling parameteinumerical), all for system lenth = 1024.

that they will in general depend on the system lengtfsee Sec. 5.1.2). The values for
the actual critical coupling parametgrare not obtained from the data shown in Fig. 5.3.
Instead, those values paire chosen which the best scalifig|), (t) ~t~° is found for (see
also Figs. 5.6 and 5.8 below).

It is obvious thaty. = ycjin for the continuous skew tent and logistic maps, while
% > Yclin for the discontinuous skew Bernoulli maps. This is in accordance with obser-
vations by BARONI et al. for the synchronization of CMLs driven by the same realization
of an additive noise process [10, 11]. In particular, it has been shown in Ref. [10] that for
stochastic synchronization of CMLs consisting of discontinuous maps the critical galue
coincides with the value of at which the velocitywr of nonlinear information propagation
becomes zero (see Sec. 2.2 for a definitioaf This is reproduced by our calculations for
coupled Bernoullimap CMLs as can be seen in Fig. 5.4(b). For tent Civtlas well ast |
become zero at= v in (See Fig. 5.4(a)). In Fig. 5.4(a) it is also obvious that the transverse
Lyapunov exponent , is proportional toy, — y in the vicinity of y.
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Figure 5.4: The transverse Lyapunov exponeént(denoted byir in the figures, filled circles) and
velocity of nonlinear information propagation (open circles) versus the coupling parametéar
CMLs consisting of. = 1024 tent (a) and Bernoulli (b) maps, respectively, with paramaters/2.
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5 Synchronization of Extended Systems

5.2.2 Spatiotemporal Dynamics

Because of the multiplicative nature of the linear perturbation dynamics (see Egs. (5.2),
(5.4), and (5.5)), the synchronization error decreases exponentially such that the synchro-
nization is never perfect. This means that for . nearly synchronized sites can easily
desynchronize due to fluctuations. In other words, the synchronized state is not absorbing
in the sense of DP. While these considerations hold in the case of CMLs consisting of contin-
uous maps, the linear approximation is not adequate for CMLs consisting of discontinuous
maps. There the nonlinear mechanism of information propagation inhibits synchronization
even if the transverse Lyapunov expongntis clearly negative. Since this mechanism is
associated with finite perturbations of the synchronized state, however, already synchro-
nized sites are not expected to desynchronize by themselves: small fluctuations are damped
becausé., is clearly negative.

In Fig. 5.5 the spatiotemporal evolution of the synchronization error is plotted for val-
ues of the coupling parameterslightly larger than the criticaj.. As can be seen, there
are desynchronization events in fully synchronized regions in the case of tent map CMLs
(Fig. 5.5(a)), while this is not the case for Bernoulli map CMLs (Fig. 5.5(b)). For the lat-
ter, desynchronization of already synchronized sites is only possible due to the influence of
neighbouring unsynchronized sites. From the different synchronization mechanisms we can
guess the corresponding types of transition.

(@ (b)
20000 T T T T T T 2000 T

1500

0 200 400 600 800 1000 0 200 400 600 800 1000
X X

Figure 5.5: Space-time plots of the synchronization of coupled CMLs with coupling parameters
vy slightly larger than the critical valueg. A black dot corresponds to an unsynchronized and a
white dot to a synchronized site, respectively (threshajd= 10-8). (a) Tent mapsy = 0.18; (b)
Bernoulli mapsy = 0.295. In both cases= 1/2 andL = 1024, random initial conditions far (x, 0)
andux(x, 0), coupling switched on after some transient evolution of the uncoupled CMLs.
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e For CMLs consisting of continuous maps (more exactly for CMLs whose stability is
determined by linear mechanisms) the transition is ruled by the linear perturbation
dynamics and is therefore expected to be KPZ-like (see Sec. 5.1.2).

e For CMLs consisting of discontinuous maps (more exactly for CMLs whose sta-
bility is determined by nonlinear mechanisms, see the remarks on stable chaos in
Sec. 2.2), howevele > xin and the synchronized state is absorbingyfer y. (see
also Ref. [11]): sincé., < O for y < ¥, there are no local desynchronization events
in already synchronized regions. Since the velogityf nonlinear information prop-
agation is positive, however, desynchronization can occur by means of “diffusion” of
the local differencev(x,t) to neighbouring, already synchronized sites. Writing “1”
for an unsynchronized and “0” for a synchronized site, we can set up a simple discrete
model whose dynamics are given by the rules

120, o01®11, 10%11, 0004 010,

with transition rateg; and p; for local synchronization and error diffusion, respec-
tively. At the critical coupling parametet. the velocityvg vanishes. Sincgr does

not depend on the system length (it describes the propagation of initially localized
perturbations)y also does not depend anConcluding, the transition is expected to
be DP-like.

In the following sections we will confirm these expectations by numerical results.

5.3 Numerical Results for Coupled Map Lattices

5.3.1 Continuous Maps

We first consider CMLs consisting of continuous maps, in particular tent maps with pa-
rametera= 1/2. As mentioned before, the critical coupling parameter is obtained from the
scaling law(|w/), (t) ~t~%. In Fig. 5.6 the time dependence @), is shown for several
values ofyaround 0176. Best scaling is found fgg = 0.17605. Strong fluctuations near the
critical point, long transients, and finite-size effects inhibit a direct estimation of the critical
exponent. From Fig. 5.6 it can be seen, however, that the numerical results are consistent
with the exponens = 1.19 that is found for the discrete single step model introduced in
Sec. 5.4.1 below.

The scaling behaviouw|),; ~ (% — y)B of the data from Fig. 5.3 is not good enough
to allow checking the valug = 1.699 estimated in Sec. 5.4.1 below. It is well-known that
the estimation of the exponefitis difficult due to long transients [49]. A larger system size,
longer simulation times, and averages over a larger number of initial conditions would be
needed.
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<w(x,t)|>
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t

Figure 5.6: Coupled tent map CMLsa(= 1/2, L = 1024): time depedence of the space-averaged
absolute differencéwl), (t) for coupling parameterge {0.17590.17600.176050.17610.1762
(upper to lower solid lines) in doubly-logarithmic coordinates. The best scalitif is observed

for . = 0.17605. The dashed line has a slop#.19 as found in Sec. 5.4.1. The numerical results
are averages over 1000 to 10000 initial conditions. The decreasing absolute slopetahiditgtes

saturation due to finite-size effects.

Finally, we have checked the predictions for the finite-size dependerice! of the
Lyapunov exponentey: Of the extended system and the critical coupling parametéte
numerically calculatediey: for CMLs of lengthsL € {32 64,128 256 512 1024} (using
the 0-norm, see App. A.1). The critical coupling parameter obtained from a scaling analysis
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Figure 5.7: Coupled tentmap CMLs(=1/2,L € {32,64,128 256 512 1024}): finite-size scaling
of the Lyapunov exponentiex:(L) (filled circles, left axis), and the critical coupling parametgfl.)
(open circles, right axis). The straigt lines are linear fits.
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as shown in Fig. 5.6 coincided for dll with the linear estimatein, see Eq. (5.9) and
Tab. 5.1. In Fig. 5.7 the scaling L~ is shown.

5.3.2 Discontinuous Maps

Now we consider CMLs consisting of discontinuous maps, in particular Bernoulli maps
with parametela = 1/2. The critical coupling parameter, which is larger than the linear
prediction (5.9), is again obtained from the scaling kaw]), (t) ~ t=°. From Fig. 5.8 the
critical coupling parameteg, = 0.2875 is found for a CML of length = 1024. The same
value ofy. is also found for other system lengths (see the finite-size scaling results below).
We conclude that the critical coupling parameter does not depend on the system length in
the case of CMLs consisting of discontinuous maps.

In Sec. 5.2.2 it was argued that the synchronization transition is in the directed perco-
lation (DP) universality class for CMLs consisting of discontinuous maps. From Fig. 5.8
we see that the numerical results are consistent with the DP dalu®.159 [61] for the
critical exponent. Further numerical evidence for the DP nature of the synchronization tran-
sition is given by the validity of the finite-size scaling relation (5.13), which can be seen
from Fig. 5.9. There the rescaling with the DP expongnte, = 0.252 andz= 1.581 [61]
results in a very good collapse of the different curves onto the single scaling function.

X

<w(x.)>

0.02

Figure 5.8: Coupled Bernouli map CMLs & = 1/2, L = 1024): time depen-
dence of the space-averaged absolute differen¢e|), (t) for coupling parameters
y € {0.28730.28740.28750.28760.2877} (upper to lower solid lines) in doubly-logarithmic
coordinates. The best scalirgt —° is observed fol, = 0.2875. The dashed line has a slop@.159
as expected for DP. The numerical results are averages over 1000 initial conditions.
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Figure 5.9: Finite-size scaling for Bernoulli map CMLs wita = 1/2 and coupling parameter
y=0.2875. The time dependence of the averaged absolute diffeferjge(t) is plotted in unscaled
(a) and and scaled (b) coordinates for system lenbths{32,64,128 256,512 1024} (lower to
upper lines). The DP valugs/v, = 0.252 andz = 1.581 [61] have been used for the exponemis (
in the figure corresponds ig in the text).

5.4 Numerical Results for Discrete Growth Models

5.4.1 Single Step Model with Lower Wall

Since the synchronization transition has been shown to fall into the universality class of the
KPZ equation with a saturating term, it is promising to make use of discrete growth models
that are known to belong to the KPZ universality class. The saturation can be provided by
a growth-limiting wall. While a similar approach has already been used byid% and
HwaA in the context of the multiplicative noise equation [82], the specific single step model
we employ has the advantage that the free interface velocity (i. e., without a wall) is known
exactly, even for systems of finite length. Since this velocity corresponds to the transverse
Lyapunov exponent, the critical point is known exactly, which makes estimating critical
exponents much easier.

The original single step model has been introduced for studying roughening interfaces.
It is a restricted solid on solid (RSOS) model that has been shown to belong to the KPZ
universality class [76]. It can be related to the totally asymmetric exclusion process [72].
The basic model consists of of an even numbef sites of integer heightl; (x,t) € No,
x e {0,...,L—1}, t € Z, with periodic boundary conditions$J; (x+ L,t) = H,(x,t). The
initial state (flat interface) is typically given by

0 for evenx,
Hi(x,0) = {1 for oddx. (5.17)

A timestep consists df substeps. At each substep, a site is chosen randomly. If this site is
a local minimum, its height is increased by two; otherwise nothing is done. In this way it is

68



5.4 Numerical Results for Discrete Growth Models
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Figure 5.10: A sketch of the interface of the single step modeH16). Atx = 8 a local minimum
is found and the local height of the interface is increased by two. The arrows indicate positive and
negative slopes between the sites.

ensured that the height difference between neighbouring sites is always one (see Fig. 5.10
for an illustration). If we denote a positive slope between interface sitésaingl a negative
slope by], we have the simple transition rule

=1 1AL,

The velocity of the saturated interface can be calculated as follows. Due to periodic
boundary conditions we always halv¢2 slopes| andL/2 slopes]. After a transient phase
neighbouring slopes can be assumed to be uncorrelated. The probability to randomly find
a slope] at sitex is (L/2)/L. Given this, the probability to have a slogeat the right
neighbouring sitec+ 1 is (L/2) /(L — 1). If such a combination is found, the average height
of the interface is increased by 2 Since a timestep consists lblsubsteps, we obtain the
interface velocity [71]

2L/2 L2 1
Vil T it (5-18)
In first order we obtain a finite-size correctivn(L) ~ V; («) +1/(2L) with V;(e) = 1/2.
The scaling~ Lt is a general behaviour that can be explained by analytical arguments [71].
It corresponds to the finite-size scaling of the Lyapunov exponent of a spatially extended
system, see Sec. 5.1.2. Note that a flat interface (5.17) fasninima (instead ok L /4
after saturation) and therefore has a larger velocity than the one given by Eq. (5.18).

In Sec. 5.1.2 we have introduced a stochastic model for the dynamics of the synchroniza-
tion errorw(x,t). For the transformed variable= In|w| we obtain the KPZ equation (5.6)
with an additional local nonlinear term that prevehts,t) from growing beyond order
one. Synchronization in this model corresponds to an intetfiao@ving towards—oo. In
our single step model, a hard wall at heigfyy (t) moving with a velocityMy will play the
role of the saturating nonlinearity. We will now argue that a lower wall is appropriate. In
the modified KPZ equation (5.6) tt{&lh)? term has the positive prefacterFrom Eq. (5.7)
it thus follows that the interface velocity increases with the roughness of the interface. For
the single step model, however, the interface velocity is largest for a a flat interface. By
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changing the sign df (ﬁ = —h) and dividing by—1, Eq. (5.6) is transformed into

ah(x,t)

s = —C() +ebhlx 1) — (ORI + pe 00 — & (x ).

Now the prefactor of theDﬁ)2 term is negative, in accordance with the single step model.
Forh synchronization corresponds to an interface moving towardsand the saturating
term+pexp(—2ﬁ) corresponds to a soft lower wall preventinfrom becoming much less
than order one.

The connection between the single step model and the synchronization error now is as
follows. The variablén(x,t) = In|w(x,t)| corresponds to the difference between the height
of the wall and the height of the interface at sife

h(X,t) — Hw(t)—H|(X,t),
(Woet)l) s (@MOHO0)

The transverse Lyapunov exponent corresponds to the difference between the velocities of
the wall and the interface,

AL — WV

In this way, synchronization corresponds to an interface moving faster than the wall (thus
escaping from the wall), whereas desynchronization corresponds to an interface moving
slower than the wall.

We now give a summary of the single step model with a hard lower wall and some
details of its implementation.

1. The system lengthis chosen as a power of two, which allows using the logical “and”
operation to ensure periodic boundary conditions.

2. One unit timestep consists bfsubsteps.

3. If not stated otherwise, the initial interface is flat (according to Eq. (5.17)) and at-
tached to the wally (0) = 0).

4. A substep corresponds to first randomly selecting axsited checking if it is a local
minimum. If so, its height is increased by two:

if H(x—1t)>H(xt) <H(x+1t) then H;(xt)— H(xt)+2.

5. The free interface has the steady-state veldgity (1/2)L/(L — 1) (see Eq. (5.18)).
When starting with a flat interface, the initial velocity is larger.
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6. The heighty(t) of the wall is increased by one aftilyy substeps, which results in
the wall velocityMy = L/Nw. The heights of all sites that lie below the wall after this
step are immediately increased by two:

if H, (X,t) < Hw(t) then H, (X,t) — H (X,t) + 2.

7. The velocity differencéV =Wy —V, is equivalent to the transverse Lyapunov ex-
ponenti; and acts as the control parameter. The critical value is givesivoy: O.
If 6V is positive, the wall moves faster than the interface and catchesdV lis
negative, the interface moves faster than the wall and escapes, which corresponds to
synchronization.

8. The velocity differencéV (i.e., the control parameter) is varied by adjustig
according to
L 2(L-1)

MW=V T Trava- 0

We now present numerical results for a system lerigte 22° = 1,048 576 that
allow estimating the critical exponent and 8. In Fig. 5.11 the time dependence of
(exp(Hw — Hi)), is shown for different values a8V. A scaling~ t=° is clearly found
for 8V = 0; a power law fit givess = 1.19. In Fig. 5.12 the transitiofexp(Hw — Hi)),
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Figure 5.11: (exp(Hw—H)), versus t for the single step model with system
length L = 1048576 and 8V = —0.001 (squares),éV = 0 (filled circles), 6V €
{0.00050.001,...,0.004,0.005,...,0.008} (lower to upper lines of diamonds). FaVv = 0,

we find (exp(Hw — H)), ~t=% with § = 1.19. The shown results are averages over five different
runs (with different sequences of random numbers), all starting with a flat interface attached to the
wall.
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Figure 5.12: (a) The transition ofexp(Hw —H)),; versussV for L = 1,048 576. The data from
Fig. 5.11 have been time-averaged after saturation. (b) The same data in doubly-logarithmic coordi-
nates. The scaling behavio(@xp(Hw —Hi))y ~ 8VP is confirmed withg = 1.699.

(time-averaged after saturation) vers¥sis shown for the unsynchronized pha®sé > 0.
A power law fit gives = 1.699.

While our estimate foB is consistent with the result ofuret al. (see Sec. 5.1.3 and
Ref. [107]), our estimate fo# is slightly different. It is, however, consistent with our nu-
merical results for coupled tent map CMLs, as has been shown in Fig. 5.6.

5.4.2 Single Step Model with Attractive Lower Wall

We now want to modify the single step model introduced in the previous section in such
a way that it describes the synchronization transition in the case of CMLs consisting of
discontinuous maps (see Sec. 5.3.2). To this end, it is useful to have a look at a snapshot of
the profile of the synchronization errarof Bernoulli map CMLs coupled with a parameter

Yelin < ¥ < %. In Fig. 5.13 we observe a localizationwfas in the case of coupled tent map
CMLs (see Fig. 5.2). In logarithmic coordinates, however, no typical KPZ-like interface is
observed. On the contrary, the interface sticks aromrd10-2 in some places while it has

very small values oiv in between.

To include this behaviour into the single step model, we make the wall attractive. This
is achieved by changing point 4 of the algorithm described in Sec. 5.4.1, which now reads

4’, A substep corresponds to first randomly selecting axsited checking if it is a local
minimum. If it is a minimum at the same height as the wall, its height is increased by
two with probability 1— qg; if it is a minimum at a larger height, its height is increased
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Figure 5.13: (a) Snapshot of the synchronization erme= u; — up for coupled Bernoulli map
CMLs (L = 1024) with a coupling parametge= 0.2865 slightly below the critical valug, but above
%lin- (b) Plotting|w| in logarithmic coordinates gives the profile corresponding to the roughening
interface. It does not, however, show typical KPZ-like properties (cp. Fig. 5.2).

by two with probability 1:

if  H(x=211t)>H(xt) <H(x+1t) then

it Hi(xt) { = w(t) then Hi(xt) — H (xt)+2  with prob. 1-g,
" > Hw(t) then Hi(x,t) — H(x,t)+2 with prob. 1

For large enouglg we thus achieve that the interface stays attached to the wall even if the
interface velocity is larger than the wall velocity, (> Wy, i.€e., 8V < 0). The parameter
g measures the attractivity of the wall, the limiting cases are the single step model with a
nonattractive wall introduced in Sec. 5.4dl= 0) and an interface that cannot escape from
the wall @=1).

As usual in the context of DP, we study the behaviour of the density of attached (or

unsynchronized) sites
p(t) = card{x: H (xL,t) = Hw(t)} .

The densityp (t) scales in the same way dsv|) : sinceV, > Wy (or 1, < 0) the interface at
a certain site stays either at the wall or moves far away from it (see also Fig. 5.13(b)). This
means that the contribution tow|) of sites that are not attached to the wall is negligible.

In Fig. 5.14 numerical results for the temporal evolution paf) for L = 220 =
1,048 576,q= 0.7, and different values @V are shown. The critical velocity difference is
no longer known exactly but has to be estimated from the scaling behaviour. From Fig. 5.14
we find a valuesV, = —0.07035+ 0.00005 that is clearly less than zero. B < 6V < 0
we have phase coexistence: a free (initially detached) interface moves away from the wall,
whereas an initially attached interface stays attached to the wall. The sealitfyis con-
sistent with the exponert= 0.159 known for DP.
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Figure 5.14: Density p(t) of attached sites versus for the single step model with
system lengthL = 1,048576, g = 0.7, and §V € {-0.071,-0.0704} (squares),sV €
{-0.0703 —0.070,—0.0695...,—0.0655} (lower to upper lines of diamonds). From these results
we estimate the critical control parameteisas = —0.07035+ 0.00005. The dashed line shows the
scalingp(t) ~ t=% with § = 0.159 as expected for DP. The shown results are averages over one to
five different runs (with different sequences of random numbers), all starting with a flat interface
attached to the wall.

In Fig. 5.15 the scaling behavioys), ~ §V# (time-averaged after saturation) is shown
for 8V > 6V. A power law fit gives an exponefit= 0.266 which is not too different from
the DP value = 0.276. We stress that the critical velocity differen®é. is only known
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Figure 5.15: (a) The transition ofp), versussV — 5V, (with 6V = —0.07035) forL = 1,048 576
andg = 0.7. The data from Fig. 5.14 have been time-averaged after saturation. (b) The same data in
doubly-logarithmic coordinates. The scaling behavigug ~ 5VA is confirmed with3 = 0.266.
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approximately in this case such that the estimafg@dnnot be expected to be very accurate.
We finally remark that an analysis of the finite-size scaling L* of the first passage
time (after which the interface detaches from the wall) is difficult because the control param-
etersV enters the model via the discrete numbigr € N* of substeps between successive
increments of the wall height (see point 8 of the algorithm in Sec. 5.4.1). For small values of
the system sizk, the control parameter can therefore only be changed in rather large steps.
Even worse, for different the same value of the control parameter cannot be applied. The
highly fluctuating results indicate the validity of the scaling law (with the DP vatud.58)
at the critical velocity differencéV.. For large values df, the steps between different pos-
sible values of the control parame® are very small and do not pose problems; the first
passage time, however, becomes astronomically large.

5.5 Summary and Perspectives

In this chapter we have introduced a stochastic model for the synchronization error of cou-
pled extended dynamical systems. The stochastic partial differential equation is known
as the multiplicative noise equation and can be transformed into the Kardar-Parisi-Zhang
(KPZ) equation with an additional growth-limiting term.

We have shown that the multiplicative noise equation is the correct model for coupled
map lattices (CMLSs) consisting of continuous maps (more exactly CMLs whose stability is
determined by linear mechanisms). The critical coupling parameter for these systems can
be calculated from the condition that the transverse Lyapunov exponent is zero. This criti-
cal coupling parameter shows a finite-size dependenice?. A discrete growth model has
been introduced (single step model with lower wall) which has a critical point that is known
exactly and allows efficient numerical computation of the critical exponents. Accurate val-
ues for the critical exponents of the multiplicative noise equation are still missing. The
single step model with a lower wall may be useful in this context. Our results for the critical
exponents should only be regarded as first estimates; large-scale simulations are needed to
obtain definitive values. Furthermore, the estimation of the critial exponentésd v for
the correlation length and time of the perturbation dynamics (see Sec. 5.1.3) remains to be
done.

For CMLs consisting of discontinuous maps (more exactly CMLs whose stability is
determined by nonlinear mechanisms) the multiplicative noise equation does not describe
the synchronization transition. Here the critical coupling parameter is given by the condi-
tion that the velocity of nonlinear information propagatignbecomes zero; at that point
the transverse Lyapunov exponent is already clearly negative. We have shown that the syn-
chronization transition for such systems is in the universality class of directed percolation
(DP), which can be understood from the observation that the synchronized state is absorb-
ing. For DP, the critical exponents are known with very high accuracy (although not ex-
actly). Our numerical results agree very well with these exponents. The single step model
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has been modified to describe this type of transition by making the wall attractive. This
modified single step model is also interesting in the context of nonequilibrium wetting tran-
sitions [56, 57]. The connection with previous models is currently under investigation [96].
Also of interest is the nature of the phase diagram (for the two phases attached/detached
interface) with the two control parameted¥ andq: asq is varied between 0 and 1, the

type of transition changes from KPZ-like to DP-like. The question arises if the critical ex-
ponents change continuously or discontinuously in between; also this is a point of current
investigation [97].

The existence of two different mechanisms for the synchronization transition and the
observed universality classes (KPZ with growth-limiting term, DP) are in accordance with
results of B\RONI et al. for CMLs that are not directly coupled to each other, but driven by
the same realization of an additive noise process [10, 11]. Recently a finite-size Lyapunov
exponent has been proposed to characterize the stability of dynamical systems with respect
to finite perturbations, which might be useful for calculating the critical coupling param-
eter of spatially extended systems that exhibit a DP-like synchronization transition [23].
One may argue, however, that CMLs consisting of discontinuous maps can be regarded as
unphysical. Although our numerical simulations have been limited to CMLs, from our theo-
retical description the typical synchronization transition of coupled partial differential equa-
tions can be expected to be KPZ-like (recall that so far stable chaos has not been observed
in PDESs). Furthermore, our considerations have been limited to one spatial dimension. Re-
sults for the multiplicative noise equation indicate similar transitions (with different critical
exponents) in two and three spatial dimensions [40]. In three spatial dimensions, however,
two diferent types of transition are observed in dependence on the noise strength [51, 40].

The main problems for an experimental verification of our theoretical and numerical
results are the requirements of long time series and an accurate measurement of the critical
coupling strength. Possible coupled chaotic systems that can be considered as extended in
one spatial dimension are:

e Semiconductor laser arrays [78] and broad area semiconductor lasers [32] that could
be coupled by injecting light from one system into the other one.

e External cavity semiconductor lasers [80] for which the time delay can be regarded as
a one-dimensional spatial extension [43, 44]. Also for these systems the coupling can
be realized via light injection [79, 2]. A similar, but simpler model system consists of
coupled lkeda delay differential equations [60], see Sec. 3.4.2.

e Liquid crystals describable by the anisotropic Ginzburg-Landau equation [31]. In this
PDE model, different diffusion constants apply in different spatial directions.

At least the finite-size dependenge~ L~ (whereL corresponds to the delay time in the
case of external cavity semiconductor lasers) should be observable in experiments.
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6 Conclusion

In this work different aspects of the perturbation dynamics of coupled chaotic systems have
been studied. As two central phenomena the coupling dependence of the Lyapunov expo-
nents of weakly coupled chaotic systems and the coupling dependence of the synchroniza-
tion error of strongly coupled spatially extended chaotic systems have been chosen. This
choice was motivated by the observed universality, which manifests itself in scaling laws
which are valid for a wide range of different systems. By replacing the chaotic fluctua-
tions in the linearized perturbation dynamics by stochastic processes, we were able to give
explanations for the observed universality and to obtain analytical or approximate results.

In the following, we discuss our main results. Finally, we report open questions and
future perspectives.

6.1 Discussion of Main Results

Coupling Sensitivity of Chaos

We have introduced a stochastic continuous-time model for the perturbation dynamics of
weakly coupled chaotic systems, which includes the key ingredients of exponential growth,
temporal fluctuations, and coupling (Ch. 3 and Refs. [113, 3, 114]). By means of the Fokker-
Planck equation we have been able to derive a general analytic expression for the coupling
dependence of the largest Lyapunov exponent. In contrast to previous models [29, 75, 22] it
is also valid for coupled nonidentical systems. As a special case for very small coupling and
identical Lyapunov exponents of the uncoupled systems, we have obtained as an approxima-
tion the 7/ In |¢| dependence of the largest Lyapunov exponent known as coupling sensitivity
of chaos [26]. In agreement with previous observations [26], our results underline the ne-
cessity of fluctuations of the local multipliers (or finite-time Lyapunov exponents) for this
singular behaviour of the Lyapunov exponent. Analytical or approximate expressions have
also been obtained for the sum of Lyapunov exponents and for the generalized Lyapunov
exponents.

A comparison with results of numerical simulations for coupled maps, but also for
coupled high-dimensional delay differential equations, undermined the validity of our the-
oretical results, but also showed the limits of the stochastic approach. These limits are
reached when the implicit assumption of coupling-independence of the local multipliers
breaks down, i.e., for strong coupling and for nonsingular coupling dependence (e.g., for
the generalized Lyapunov exponents), or when long temporal correlations are present (e.g.,
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for strange nonchaotic attractors). Furthermore, our model is restricted tofiiapshose

first derivativesf’(u) have the same sign for all Numerical simulations, however, give

the 1/In|e| dependence of the largest Lyapunov exponent also for general maps [26]; re-
cently a stochastic model similar to ours has been proposed for the perturbation dynamics
of weakly coupled map lattices, which includes the possibility of sign changes of the deriva-
tives f'(u) [22]. Finally we have shown that our simple stochastic model allows a qualitative
understanding of the coupling sensitivity of chaos as a restricted random walk phenomenon.

Avoided Crossing of Lyapunov Exponents

As a consequence of the coupling sensitivity of chaos, we have found the new phenomenon
of avoided crossing of Lyapunov exponents in weakly coupled disordered chaotic systems
(Ch. 4 and Ref. [4]). Disorder in this context refers to differences between the parameters of
the coupled subsystems. The repulsion between Lyapunov exponents is qualitatively simi-
lar to the energy level repulsion in nonintegrable quantum systems [54], but quantitatively
much stronger. Indeed a relation to random matrix theory [77] can be drawn. In our problem,
however, the eigenvalues of products of random matrices are of interest, and we have two
sources of randomness: quenched disorder due to different subsystems and dynamic noise
due to chaotic fluctuations. Using the results obtained in the context of the coupling sensitiv-
ity of chaos (Ch. 3), we have derived the asymptotic expressidn) ~ exp(—1/z) for the
distribution function of small spacings between the Lyapunov exponents, which agrees well
with results of numerical calculations for different systems (dissipative and Hamiltonian
ones) and different coupling schemes (nearest neighbour and global types).

Synchronization Transition of Spatially Extended Systems

Finally we have studied the dependence of the averaged difference between the states of
two strongly coupled spatially extended chaotic systems on the coupling strength (Ch. 5).
Inspired by the observation that this synchronization transition can be seen as a continu-
ous phase transition, our investigations were based upon a multiplicative noise PDE model
with a nonlinear saturation term, which has been proposed before as a model for the syn-
chronization transition [91, 48, 49] and also studied in other contexts [12, 51, 107, 82, 40].
By means of the Hopf-Cole transformation this model can be related to the Kardar-Parisi-
Zhang (KPZ) equation [9, 55]. We have shown that the critical coupling parametan

be calculated from the Lyapunov exponexy; of a single spatially extended system, and
thaty. inherits the finite-size scaling L= from Aey [93]. Furthermore, we have added the
saturation mechanism to a discrete growth model (the single step model known to belong
to the KPZ universality class) by means of a hard wall pushing the interface from below.
The transverse Lyapunov exponent then corresponds to the difference between the wall and
interface velocities, while the synchronization error corresponds to the average height dif-
ference between the wall and the interface. This discrete model is computationally efficient,
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and its critical parameter is known exactly.
Numerical simulations for different coupled map lattices (CMLS) revealed the existence
of two types of the synchronization transition.

e For CMLs consisting of continuous maps, good agreement with the predictions of the
stochastic model has been found. In particular, the predicted value and the finite-size
scaling of the critical coupling parametgras well as the scalingw|), ~t=? of the
space-averaged synchronization error are reproduced, the latter in consistence with
the exponend = 1.19 estimated from the discrete growth model.

e For CMLs consisting of discontinuous maps, the numerical results do not agree with
the predictions of the stochastic model. Namely, the critical coupling parameter is
larger than expected, and the scalihg|), ~t~° shows an exponet< 1. This can
be explained by the dominance of a nonlinear mechanism of information flow, lead-
ing to an instability with respect to finite perturbations of linearly stable systems [95].
Due to the linear stability, the synchronized state is absorbing and the transition is in
the directed percolation (DP) universality class. This has been shown by the consis-
tence of the numerical results with the DP expongat 0.159 and by a very good
data collapse of results for different system lengths according to a finite-size scaling
relation.

The existence of two different types of the synchronization transition is in agreement with
recent results for the synchronization of CMLs which are not directly coupled, but driven by
the same additive noise process [10, 11]. The lower wall in the discrete growth model can
be made attractive such that the model shows the DP transition. For this modified model,
however, the critical parameter is not known exactly anymore.

6.2 Open Questions and Perspectives

A main direction of further research should be the study of manifestations of our theoret-
ical results in physical systems. Our results concerning the synchronization transition of
spatially extended systems (Ch. 5) are directly applicable to coupled optical systems, such
as broad area semiconductor lasers [32], semiconductor laser arrays [78], or lasers with
time-delayed feedback [80], which can all be regarded as spatially one-dimensional. These
systems have been shown to provide spatiotemporal chaos, and they can easily be coupled
site by site via light injection. The experimentalist would have to cope with two problems.
First, the accurate adjustment and measurement of the coupling strength could pose diffi-
culties. Second, an accurate measurement of the synchronization error would be needed to
estimate the critical coupling strength and the critical exponents.

To directly observe the coupling dependence of the Lyapunov exponents (Chs. 3 and 4)
in experimental weakly coupled chaotic systems is expected to be difficult, although some
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methods exist to estimate at least the largest Lyapunov exponent from experimental time
series [65]. A more promising approach could be to look for indirect effects on measurable
quantities that depend on the Lyapunov exponents. The Lyapunov exponents of disordered
systems play a special role in this context, as they are connected with the localization length,
the electrical conductance, and correlation functions [25, 70]. Further theoretical research is
needed to investigate possible consequences of the coupling sensitivity of chaos and of the
avoided crossing of Lyapunov exponents. First results exist, however, for the localization
length in coupled one-dimensional disordered lattices [115].

On the theoretical side, the connection of the avoided crossing of Lyapunov exponents
with random matrix theory (Ch. 4) deserves further research. A starting point could be the
limit of vanishing dynamic noise (i. e., coupled maps with nonfluctuating local multipliers):
in that case the problem of calculating the eigenvalues of the product of random matrices
reduces to calculating the eigenvalues of a single random matrix.

Furthermore, several open questions exist in the context of the synchronization transi-
tion of spatially extended systems (Ch. 5). First, it would be interesting to check the va-
lidity of our results for coupled partial differential equations (PDES). Second, an obvious
generalization is given by coupled systems of higher spatial dimension. Studies of the mul-
tiplicative noise PDE in three spatial dimensions predict two different types of transition
in dependence on the magnitude of fluctuations [51, 107, 40]. Third, accurate estimates of
the critical exponents for the multiplicative noise PDE are still needed. We think that the
discrete growth model (single step model with lower wall) could be a useful tool to nu-
merically obtain these estimates, since the critical point is known exactly for this model.
Fourth, the phase diagram of the modified discrete growth model (single step model with
attractive lower wall) is expected to be interesting in its own right. It is given by the location
and nature of the transition between an attached and a moving interface in the parameter
space that is spanned up by the attractigityf the wall and the velocity differenc&®/ be-
tween the wall and the free interface. This phase diagram and its possible connection with
a nonequilibrium wetting model [56, 57] are currently under investigation [97].
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A Appendix

A.1 Numerical Calculation of Lyapunov Exponents

Lyapunov exponents are introduced in Ch. 2 as indicators for the stability properties of

dynamical systems. Here we describe the methods used in this work to numerically calculate
these exponents (see, e.g., Ref. [84]). A comparison of different methods for calculating

Lyapunov exponents can be found in Ref. [39].

A.1.1 Discrete Maps

To calculate alN Lyapunov exponents of ad-dimensional map of the form (2.2), we have
to follow the dynamics oN perturbation vectorsi, i =1,...,N, which fort = 0 are linearly
independent and normalized to unit length. The largest Lyapunov exponent is then given by

1
= fim <In w(t)]| (A1)

it does not depend on the norm. The sum ofrihl@rgest Lyapunov exponents is given by
d 1
i;)q = JE‘;{ INVi(t), (A.2)

whereV, is the volume spanned up by the perturbation veactars. . , w,.

At this point we face two problems. First, the nofjw(t)| grows or shrinks exponen-
tially if A1 is greater or less than zero, respectively. So already for moderate vatugseof
norm can either not be calculated due to numerical overflow, or is zero due to limited numer-
ical precision. In both caseg, cannot be calculated from Eq. (A.1). Secondyifs positive
and some other perturbation vectar i > 1, has a component in the directionw, this
component grows with a larger exponential rate than the components in all other directions.
In this way the different perturbation vectors rapidly align in the direction of largest growth.
As a result the calculation of volumes spanned up by different vectors becomes impossible
due to limited numerical precision.

The remedy for these problems is reorthonormalization of the perturbation vegtors
after not too long time intervals. The growth rate of the linear system is independent of the
length of the vectors, such that renormalization of the vectors is a valid way to overcome
the first problem. Reorthogonalizing the vectors ensureswhaioints in the direction of

81



A Appendix

largest growthy, points in the direction of second largest growth perpendiculant@nd
so on. Furthermore, the volumes are now rectangular and we have

n
NV, = len [l | -
i=

So we can subtract the expressions (A.2) for differetat directly calculatel;,
Nort

1
I (5
Nort Tort ]Zl n HW'( J) } ’

where Nort and Tor¢ are the (large) number of and the (short) time interval between re-
orthonormalizations, ang is the time of thej-th reorthonormalization. The reorthonor-
malization method used for the numerical calculations in this work is the modified Gram-
Schmidt algorithm, which is humerically more accurate than the classical Gram-Schmidt
algorithm [15]. Before the calculation of the starts, a sufficiently long transient phase

iIs necessary to ensure that the system is on its attractor. It should be kept in mind that in
practice one always calculates finite-time Lyapunov exponents.

Ai =

A.1.2 Differential Equations

For anN-dimensional system of ordinary differential equations of the form (2.1) the algo-
rithm is essentially the same as for discrete maps. The numerical integration schemes used
in this work (Runge-Kutta, Bulirsch-Stoer [98]) calculaté&) at discrete times = ty. If
adaptive stepsize methods [98] are used, the intervals between diffeaeatin general of
different length. Therefore also the intervals between reorthonormalizations will in general
be of different length. The Lyapunov exponents are calculated according to

E

1 Nort
A=z J;'” [[wit;)

with the (long) integration timé .

A.1.3 Spatially Extended Systems

The Lyapunov exponents of spatially extended systems are calculated in a similar way as
described above. The state and perturbation vectors are usually writtegtasndw(x,t),
respectively, whergis the space ands the time variable, which can both be either discrete

or continuous. With the system lendthwe havex € [0,L) in the spatially continuous and
x€{0,1,...,L—1} in the spatially discrete case, respectively. Gheorm @ € Np) at time

t is given by

Iwilq (£) = [% /o'-|W(x,t)|q dx] 1/q7

82



A.1 Numerical Calculation of Lyapunov Exponents

where the integral has to be replaced by a sum for spatially discrete systems. The limiting
cases are

L
il ) =exp( [ mlwox)| o)

and
W[, (£) = maxjw(x, )]

Although the Lyapunov exponents are norm-independent, the properties of the finite-time
Lyapunov exponents in general depend on the norm used in the calculations. In Ref. [93]
it has been shown that of the family gfnorms only the 0-norm has the self-averaging
property that the magnitude of fluctuations of the finite-time Lyapunov exponents decreases
with increasing system length.

A.1.4 Generalized Lyapunov Exponents

Theg-th generalized Lyapunov exponent is defined as

.1
L(a) = fim ZIn {w®)]1% ,
where the average is over different trajectories of the system. This average has to be carried
out explicitly, which makes the numerical calculation of generalized Lyapunov exponents

much more difficult than the calculation of Lyapunov exponents. The standard approach
consists of first calculatingm(q) by approximating (in the discrete-time case)

(w1 ~ inw(w Ik
2

for different (small) values ofn. The value ol (q) is then calculated by considerihg,(q)
as a function of 1q and extrapolating to /g — 0. Details can be found in Ref. [25].
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A.2 Stochastic Differential Equations

We briefly review some results for stochastic differential equations that are needed in this
work. The subject is treated in detail in Refs. [58, 38, 100, 109].

A.2.1 Langevin Equation

A differential equation with a stochastic driving term is called a Langevin equation. For a
one-dimensional stochastic varialig) it is given by (in Stratonovich form, see below)

dx(t) = f(x)dt 4+ g(x) o dW(t),

whereW(t) is a Wiener process (i.e., the displacement of a Brownian particle with starting
pointW(0) = 0). It has a Gaussian distribution characterized by

(W(t)) =0, (W(tW(t')) =min(t,t).

In general, the function§ andg can also be time-dependent. In this work, we often write
Langevin equations in the intuitive form

ax(t)
o f(x) +9(x)&(1),

whereé (t) = dW/(t)/dt is a Gaussian stochastic process with zero mean, unit variance, and
no temporal correlations,

(€M) =0,  (EM)Et)) =8(t-t).

The simplest Langevin equation reads

Its solution is given by
X(t) = x(0) + /0 LW (D) = x(0) + (1),

This simple example demonstrates that the variatiledepends oiV(t). For the solution
of a multiplicative noise equation,

dx(t) = g(x) o dW(t),

it is thus not clear how the integral in the solution

K0 =x(0) + [ 9(x(©) o M(D)
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shall be calculated. There is no definite answer to this question, one has to decide between
different interpretations of the Langevin equation. In the Stratonovich interpretation the
solution is given by

N2 X (1) + X (1) . nt
X(t) = x( )+N|Ln°o nZog< 5 ) W(thi1) (tn)] with t N

For this choice the variabbet) can be transformed by the usual rules of calculus, which is
not the case for other interpretations. One can also argue that the Stratonovich interpretation
is closest to physical processes (which are never exaathyrelated).

In this work Langevin equations are used as models of chaotic processes. Since these
models are constructed to match the properties of the chaotic processes, we have to choose
one specific interpretation in advance. Throughout this work, the Stratonovich interpreta-
tion is used. The question of deciding between the Stratonovich and It interpretations in
stochastic modelling is treated in detail in Sec. 5.4.2 of Ref. [58].

A.2.2 Fokker-Planck Equation

Given a Langevin equation, one is usually not interested in individual trajectories. Instead
one often wants to calculate the mome(x%), which are in general time-dependent. All
information about the distribution oft) can be obtained from the probability density func-
tion p(x,t). The temporal evolution gf(x,t) is decribed by the Fokker-Planck equation

P 2 1100p(0) + 5 {80 200001

2
— 5 { |10+ 390900] o)} + 5 52 (00X

whereg' = dg/dx. This equation can be considered as a continuity equation for the proba-
bility density p(x,t) and the probability flow

) = | 10+ 5000800 | () — 5 57 [P0

Let x be defined on an interval with bordeasandb (a < b), which can bet-co. If there is
no probability flow across these borders, the stationary probability density is given by

ps(X) = %exp(Z/{j\X%di) ’

whereN is a normalization constant.
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A.2.3 Furutsu-Novikov Relation

At several points in this work it is necessary to calculate averages of the(fdin[&]) ,
whereF ] is a functional of (t) (e.g., an integral). For a Gaussian stochastic prog@ss

with zero mean the Furutsu-Novikov relation provides a very convenient way to evaluate
averages of this kind [35, 83]. In one dimension the relation reads

SF[E]\
)
wheresF /§& is the functional derivative, and the integral extends over the interval which

t’ is defined on.
As an example which is of particular importance for this work we study

GOFLED = [ (0z0))

t
wig] = eXp<At+/0 40 df>
with a constaniA and a Gaussian noise procégs) with

(€t) =0,  (&M)e(t)) =20°5(t—t).

Using the chain rule, the functional derivative is calculated as

5&(t)

0 else.

SwWiE] {w[g] if t'eot],

The Furutsu-Novikov relation thus gives

(E(omig) = [ 207 (t 1) (wle) o = o (i)

(note that only one half of thé-distribution contributes to the integral). Applications can
be found in Secs. 2.4.1 and 3.2.4.
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Notation

TOUO&« *Ts c X —

< ™

W(t)
Proh(X)
p(s)
Ds(2)

ODE
PDE
CML
CDF
KPZ
DP

time (discrete or continuous)

space (discrete or continuous)

state vector with components)
perturbation vector, synchronization error
nonlinear function

Jacobian of

product matrix] J

transpose oP

coupling parameter (between subsystems), diffusion constant
coupling parameter (between extended systems, Ch. 5)

eigenvalues

Lyapunov exponents

Lyapunov exponents of uncoupled systems
local (finite-time) Lyapunov exponents
variance of local Lyapunov exponeh(l)
transverse Lyapunov exponent

generalized Lyapunov exponents

stochastic processes

variance of stochastic process

Wiener process

probability of eveniX

probability density of stochastic varialde
cumulative distribution function Prgb< z)

ordinary differential equation
partial differential equation
coupled map lattice

cumulative distribution function
Kardar-Parisi-Zhang

directed percolation

87






References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

M. Abramowitz and I. A. Stegun, edd¢dandbook of Mathematical Functiof&PO,
Washington, DC, 1964).

V. Ahlers, U. Parlitz, and W. Lauterborn, Hyperchaotic dynamics and synchroniza-
tion of external-cavity semiconductor lasePhiys. Rev. 58(6):7208-7213 (1998).

V. Ahlers, R. Zillmer, and A. S. Pikovsky, Statistical theory for the coupling sensi-
tivity of chaos, in D. S. Broomhead, E. A. Luchinskaya, P. V. E. McClintock, and
T. Mullin, eds., Stochastic and Chaotic Dynamics in the Lakes: STOCHAQ®E
502 of AIP Conference Proceedingpp. 450-455 (American Institute of Physics,
Melville, NY, 2000).

V. Ahlers, R. Zillmer, and A. Pikovsky, Lyapunov exponents in disordered chaotic
systems: Avoided crossing and level statistRisys. Rev. B3:036213 (2001).

A. Amengual, E. Hernandez-Garcia, R. Montagne, and M. S. Miguel, Synchroniza-
tion of spatiotemporal chaos: The regime of coupled spatiotemporal intermittency,
Phys. Rev. Let78(23):4379-4382 (1997).

L. Arnold, M. M. Doyle, and N. S. Namachchivaya, Small noise expansion of mo-
ment Lyapunov exponents for two-dimensional systemgiamics and Stability of
Systemd42(3):187-211 (1997).

L. Arnold, Random Dynamical Systerf®pringer-Verlag, Berlin, 1998).

F. Bagnoli, L. Baroni, and P. Palmerini, Synchronization and directed percolation in
coupled map latticeRhys. Rev. B59(1):409-416 (1999).

[9] A.-L. Barabasi and H. E. Stanleffractal Concepts in Surface Grow{icambridge

[10]

[11]

University Press, Cambridge, 1995).

L. Baroni, R. Livi, and A. Torcini, Noise-driven synchronization in coupled map
lattices, in J.-M. Gambaudo, P. Hubert, P. Tisseur, and S. Vaienti, [@gsamical
Systems: From Crystal to Chags 23 (World Scientific, Singapore, 2000).

L. Baroni, R. Livi, and A. Torcini, Transition to stochastic synchronization in spa-
tially extended system®&hys. Rev. B63.036226 (2001).

89



References

[12] A. Becker and L. Kramer, Linear stability analysis for bifurcations in spatially ex-
tended systems with fluctuating control paramelys. Rev. Lett73(7):955-958
(1994).

[13] G. Benettin, Power-law behavior of Lyapunov exponents in some conservative dy-
namical system$?hysica D13(1-2):211-220 (1984).

[14] J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. NewniEme Theory of Crit-
ical Phenomena: An Introduction to the Renormalization GrQgford University
Press, Oxford, 1992).

[15] A. Bjorck, Numerics of Gram-Schmidt orthogonalizatidrinear Algebra Appl.
197/198297-316 (1994).

[16] S. Boccaletti, J. Bragard, F. T. Arecchi, and H. Mancini, Synchronization in noniden-
tical extended systemBhys. Rev. LetB3(3):536-539 (1999).

[17] T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiabiynamical Systems Approach
to Turbulencevol. 8 of Cambridge Nonlinear Science Ser{€&ambridge University
Press, Cambridge, 1998).

[18] T. Bohr, M. van Hecke, R. Mikkelsen, and M. Ipsen, On universality in transitions to
spatio-temporal chaos, e-print cond-mat/0008254 (2000).

[19] R. Bonaccini and A. Politi, Chaotic-like behaviour in chains of stable nonlinear os-
cillators,Physica D103(1-4):362—-368 (1997).

[20] L. A. Bunimovich and Y. G. Sinai, Spacetime chaos in coupled map lattid@slin-
earity 1(4):491-516 (1988).

[21] F. Cecconi and A. Politin-tree approximation for the largest Lyapunov exponent of
a coupled map latticd&?hys. Rev. B6(5):4998-5003 (1997).

[22] F. Cecconi and A. Politi, Analytic estimate of the maximum Lyapunov exponent in
products of tridiagonal random matricds Phys. A32(44):7603-7622 (1999).

[23] M. Cencini and A. Torcini, Linear and nonlinear information flow in spatially ex-
tended system&hys. Rev. B3:056201 (2001).

[24] H. Chaté, Lyapunov analysis of spatiotemporal intermitterfeyrophys. Lett.
21(4):419-425 (1993).

[25] A. Crisanti, G. Paladin, and A. Vulpiarf®roducts of Random Matrices: in Statistical
Physics vol. 104 ofSpringer Series in Solid State Phys(&pringer-Verlag, Berlin,
1993).

90



References

[26] H. Daido, Coupling sensitivity of chaoBrog. Theor. Phys72(4):853-856 (1984),
erratum published iProg. Theor. Phys73(1):310 (1985).

[27] H. Daido, Coupling sensitivity of chaos: A new universal property of chaotic dynam-
ical systemsProg. Theor. Phys. Suppi9:75—-95 (1984).

[28] H. Daido, Coupling sensitivity of chaos and the Lyapunov dimension: The case of
coupled two-dimensional mapBhys. Lett. AL10(1):5-9 (1985).

[29] H. Daido, Coupling sensitivity of chaos: Theory and further numerical evidence,
Phys. Lett. AL21(2):60—66 (1987).

[30] R.J. Deissler and K. Kaneko, Velocity-dependent Lyapunov exponents as a measure
of chaos for open-flow systenmBhys. Lett. AL198):397-402 (1987).

[31] R. Faller and L. Kramer, Phase chaos in the anisotropic complex Ginzburg-Landau
equationPhys. Rev. 57(6):R6249-R6252 (1998).

[32] I. Fischer, O. Hess, W. ElséRRer, and E. Gbbel, Complex spatio-temporal dynamics
in the near-field of a broad-area semiconductor ld&semphys. Lett35(8):579-584
(1996).

[33] H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-
oscillator systemsProg. Theor. Phy$69(1):32-47 (1983).

[34] H. Fujisaka, H. Ishii, M. Inoue, and T. Yamada, Intermittency caused by chaotic mod-
ulation II: Lyapunov exponent, fractal structure and power spectRnwg. Theor.
Phys.76(6):1198-1209 (1986).

[35] K. Furutsu, On the statistical theory of electromagnetic waves in a fluctuating
medium (1),J. Res. Natl. Bur. Stand. B7:303-323 (1963).

[36] J. Garcia-Ojalvo, A. Hernandez-Machado, and J. M. Sancho, Effects of external noise
on the Swift-Hohenberg equatioRhys. Rev. Let#71(10):1542-1545 (1993).

[37] J. Garcia-Ojalvo and R. Roy, Spatiotemporal communication with synchronized op-
tical chaosPhys. Rev. LetB6(22):5204-5207 (2001).

[38] C. W. GardinerHandbook of Stochastic Methods: for Physics, Chemistry and the
Natural Sciencesvol. 13 of Springer Series in Synergetjc2nd edn. (Springer-
Verlag, Berlin, 1985).

[39] K. Geist, U. Parlitz, and W. Lauterborn, Comparison of different methods for com-
puting Lyapunov exponentBrog. Theor. Phys33(5):875-893 (1990).

91



References

[40] W. Genovese and M. A. Mufioz, Recent results on multiplicative n&kgs. Rev. E
60(1):69-78 (1999).

[41] N. A. GershenfeldThe Nature of Mathematical Modelingcambridge University
Press, Cambridge, 1999).

[42] G. Giacomelliand A. Politi, Spatio-temporal chaos and localizatampphys. Lett.
15(4):387-392 (1991).

[43] G. Giacomelli, R. Meucci, A. Politi, and F. T. Arecchi, Defects and spacelike prop-
erties of delayed dynamical systerffhys. Rev. Let73(8):1099-1102 (1994).

[44] G. Giacomelli and A. Politi, Relationship between delayed and spatially extended
dynamical system®&hys. Rev. Let#Z6(15):2686—-2689 (1996).

[45] F. Ginelli, R. Livi, and A. Politi, Emergence of chaotic behaviour in linearly stable
systems, e-print nlin.CD/0102005 (2001).

[46] F. Ginelliand R. Livi, private communication (2001).

[47] R. Graham and A. Schenzle, Carleman imbedding of multiplicative stochastic pro-
cessesPhys. Rev. £5(3):1731-1754 (1982).

[48] P. Grassberger, Directed percolation: Results and open problems, in S. Puri and
S. Dattagupta, eddNonlinearities in Complex Systenmp. 61-89 (Narosa Publish-
ing House, New Delhi, 1997).

[49] P. Grassberger, Synchronization of coupled systems with spatiotemporallehgss,
Rev. E59(3):R2520-R2522 (1999).

[50] C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, Strange attractors that are not chaotic,
Physica D13(1-2):261—-268 (1984).

[51] G. Grinstein, M. A. Muiioz, and Y. Tu, Phase structure of systems with multiplicative
noise,Phys. Rev. Let?76(23):4376— 4379 (1996).

[52] J. Guckenheimer and P. Holmesopnlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fieldsvol. 42 of Applied Mathematical Scienc€Springer-
Verlag, New York, 1983).

[53] T. Guhr, A. Muller-Groeling, and H. A. Weidenmuller, Random-matrix theories in
quantum physics: Common conce®ys. Rep2994—6):189-425 (1998).

[54] F. Haake Quantum Signatures of Chaosl. 54 of Springer Series in Synergetics
(Springer-Verlag, Berlin, 1990).

92



References

[55] T.Halpin-Healy and Y.-C. Zhang, Kinetic roughening phenomena, stochastic growth,
directed polymers and all that: Aspects of multidisciplinary statistical mechanics,
Phys. Rep254(4—6):215-414 (1995).

[56] H.Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Model for nonequilibrium wetting
transitions in two dimension®hys. Rev. Let79(14):2710-2713 (1997).

[57] H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, First-order phase transition in
a (1+ 1)-dimensional nonequilibrium wetting proce$®ys. Rev. B61(2):R1032—
R1035 (2000).

[58] W. Horsthemke and R. LefeveNoise-Induced Transitions: Theory and Applica-
tions in Physics, Chemistry, and Biolggyol. 15 of Springer Series in Synergetics
(Springer-Verlag, Berlin, 1984).

[59] K. Ikeda, Multiple-valued stationary state and its instability of the transmitted light
by a ring cavity systenQpt. Commun30(2):257-261 (1979).

[60] K. Ikeda and K. Matsumoto, High-dimensional chaotic behavior in systems with
time-delayed feedbackRhysica D29(1-2):223-235 (1987).

[61] I. Jensen, Low-density series expansion for directed percolation I: A new efficient al-
gorithm with applications to the square lattidePhys. A32(28):5233-5249 (1999).

[62] Y. Jiang and P. Parmananda, Synchronization of spatiotemporal chaos in asymmetri-
cally coupled map lattice®hys. Rev. 57(4):4135-4139 (1998).

[63] L. Junge and U. Parlitz, Synchronization and control of coupled Ginzburg-Landau
equations using local couplinBhys. Rev. B1(4):3736-3742 (2000).

[64] K. Kaneko, Pattern dynamics in spatiotemporal chdsysica D 34(1-2):1-41
(1989).

[65] H. Kantz and T. SchreibefNonlinear Time Series Analysigol. 7 of Cambridge
Nonlinear Science Seriéd€ambridge University Press, Cambridge, 1997).

[66] M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic scaling of growing interfdelegs.
Rev. Lett56(9):889-892 (1986).

[67] G. Keller, A note on strange nonchaotic attractéigndam. Math151(2):139-148
(1996).

[68] L. Kocarev and U. Parlitz, General approach for chaotic synchronization with appli-
cations to communicatiof®hys. Rev. Let74(25):5028-5031 (1995).

93



References

[69] L. Kocarev, Z. Tasev, and U. Parlitz, Synchronizing spatiotemporal chaos of partial
differential equationsPhys. Rev. Let79(1):51-54 (1997).

[70] T. Kottos, F. M. Izrailev, and A. Politi, Finite-length Lyapunov exponents and con-
ductance for quasi-1D disordered solifysica D131(1-4):155-169 (1999).

[71] J. Krug and P. Meakin, Universal finite-size effects in the rate of growth proceksses,
Phys. A23(18):L987-L994 (1990).

[72] J. Krug, Boundary-induced phase transitions in driven diffusive systehs. Rev.
Lett.67(14):1882-1885 (1991).

[73] A.J. Lichtenberg and M. A. LiebermanRggular and Chaotic Dynamigcgol. 38 of
Applied Mathematical Scienceand edn. (Springer-Verlag, New York, 1992).

[74] R. Livi, A. Politi, and S. Ruffo, Distribution of characteristic exponents in the ther-
modynamic limit,J. Phys. A19(11):2033-2040 (1986).

[75] R. Livi, A. Politi, and S. Ruffo, Scaling-law for the maximal Lyapunov expondnt,
Phys. A25(18):4813-4826 (1992).

[76] P.Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball, Ballistic deposition on surfaces,
Phys. Rev. 84(6):5091-5103 (1986).

[77] M. L. Mehta,Random Matrice2nd edn. (Academic Press, San Diego, 1990).

[78] D. Merbach, O. Hess, H. Herzel, and E. Schéll, Injection-induced bifurcations
of transverse spatiotemporal patterns in semiconductor laser aRhys, Rev. E
52(2):1571-1578 (1995).

[79] C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, Synchronization of chaotic semi-
conductor lasers: Application to encoded communicatitiBEE Photon. Technol.
Lett. 8(2):299-301 (1996).

[80] J. Mgark, B. Tromborg, and J. Mark, Chaos in semiconductor lasers with optical feed-
back: Theory and experimenEEE J. Quantum Electror28(1):93-108 (1992).

[81] R. Miiller, K. Lippert, A. Kihnel, and U. Behn, First-order nonequilibrium phase
transition in a spatially extended systeiys. Rev. B6(3):2658—-2662 (1997).

[82] M. A. Mufioz and T. Hwa, On nonlinear diffusion with multiplicative noigajro-
phys. Lett41(2):147-152 (1998).

[83] E. A. Novikov, Functionals and the random-force method in turbulence th8oxy,
Phys. JETP20(5):1290-1294 (1965), originally published #h. Eksp. Teor. Fiz.
47:1919-1926 (1964).

94



References

[84] E. Oftt, Chaos in Dynamical Systen{€ambridge University Press, Cambridge,
1993).

[85] G. Paladin and A. Vulpiani, Scaling law and asymptotic distribution of Lyapunov
exponents in conservative dynamical systems with many degrees of fregdeimys.
A19(10):1881-1888 (1986).

[86] N. Parekh, V. R. Kumar, and B. D. Kulkarni, Synchronization and control of spa-
tiotemporal chaos using time-series data from local regi@mso0s8(1):300-306
(1998).

[87] L. M. Pecora and T. L. Carroll, Synchronization in chaotic systdpinys. Rev. Lett.
64(8):821-824 (1990).

[88] A. S. Pikovsky, On the interaction of strange attract@.sPhys. B55(2):149-154
(1984).

[89] A. S. Pikovsky and P. Grassberger, Symmetry breaking bifurcation for coupled
chaotic attractors]. Phys. A24(19):4587—-4597 (1991).

[90] A. S. Pikovsky, Local Lyapunov exponents for spatiotemporal ch#&iisos
3(2):225-232 (1993).

[91] A.S. Pikovsky and J. Kurths, Roughening interfaces in the dynamics of perturbations
of spatiotemporal chaoPhys. Rev. B9(1):898-901 (1994).

[92] A. Pikovsky and U. Feudel, Characterizing strange nonchaotic attractbess
5(1):253-260 (1995).

[93] A. Pikovsky and A. Politi, Dynamic localization of Lyapunov vectors in spacetime
chaosNonlinearity11(4):1049-1062 (1998).

[94] A. Pikovsky, M. Rosenblum, and J. KurthSynchronization: A Universal Concept
in Nonlinear Sciences/ol. 12 of Cambridge Nonlinear Science Serigambridge
University Press, Cambridge, 2001), to appeatr.

[95] A. Politi, R. Livi, G.-L. Oppo, and R. Kapral, Unpredictable behaviour in stable
systemsEurophys. Lett22(8):571-576 (1993).

[96] A. Politi and R. Livi, private communication (2001).
[97] A. Paliti, R. Livi, and A. Pikovsky, private communication (2001).

[98] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanndoymerical Recipes
in C: The Art of Scientific Computingnd edn. (Cambridge University Press, Cam-
bridge, 1992).

95



References

[99] L. E. Reichl, The Transition to Chaos: in Conservative Classical Systems: Quantum
Manifestations2nd edn. (Springer-Verlag, New York, 1992).

[100] H. Z. Risken,The Fokker-Planck Equation: Methods of Solution and Applications
vol. 18 of Springer Series in Synergetj@&nd edn. (Springer-Verlag, Berlin, 1989).

[101] J. Rolf, T. Bohr, and M. H. Jensen, Directed percolation universality in asynchronous
evolution of spatiotemporal intermittendyhys. Rev. B7(3):R2503—-R2506 (1998).

[102] R. Roy and K. S. Thornburg, Experimental synchronization of chaotic laBhys,
Rev. Lett72(13):2009-2012 (1998).

[103] M. San Miguel and R. Toral, Stochastic effects in physical systems, in E. Tirapegui,
J. Martinez, and R. Tiemann, edmistabilities and Nonequilibrium Structures VI
pp. 35-130 (Kluwer Academic Publishers, Amsterdam, 1997).

[104] A. Schenzle and H. Brand, Multiplicative stochastic processes in statistical physics,
Phys. Rev. 20(4):1628-1647 (1979).

[105] L. Schimansky-Geier and C. Zilicke, Kink propagation induced by multiplicative
noise,Z. Phys. B32(1):157-162 (1991).

[106] H.-G. Schuster, eddandbook of Chaos Contr¢Wiley-VCH, Weinheim, 1999).

[107] Y. Tu, G. Grinstein, and M. A. Mufoz, Systems with multiplicative noise: Critical
behavior from KPZ equation and numerié$ys. Rev. Let#78(2):274-277 (1997).

[108] C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Noise-induced nonequilibrium
phase transitior?hys. Rev. Let73(25):3395-3398 (1994).

[109] N. G. van KampenStochastic Processes in Physics and Chemi2ing edn. (Else-
vier Science, Amsterdam, 1997).

[110] T. Yamada and H. Fujisaka, Stability theory of synchronized motion in coupled-
oscillator systems IIProg. Theor. Physr((5):1240-1248 (1983).

[111] T. Yamada and H. Fujisaka, Intermittency caused by chaotic modulation I: Analysis
with a multiplicative noise modeRrog. Theor. Phys76(3):582-591 (1986).

[112] R. Zillmer, Lyapunov-Exponenten in gekoppelten und rauschgetriebenen Systemen,
Diplomarbeit, Universitat Potsdam (1999).

[113] R. Zillmer, V. Ahlers, and A. Pikovsky, Scaling of Lyapunov exponents of coupled
chaotic system$?hys. Rev. £1(1):332-341 (2000).

96



References

[114] R. Zillmer, V. Ahlers, and A. Pikovsky, Stochastic approach to Lyapunov exponents
in coupled chaotic systems, in J. A. Freund and T. Pdschel,Sfd&hastic Processes
in Physics, Chemistry, and Biologyol. 557 ofLecture Notes in Physicpp. 400—
410 (Springer-Verlag, Berlin, 2000).

[115] R. Zillmer and A. Pikovsky, Coupling sensitivity in the context of localization (2001),
unpublished.

97






Acknowledgements

This work would not exist in its present form without the kind help of many people and
some organizations. In particular | sincerely thank:

Prof. Dr. Arkady Pikovsky for giving me the opportunity to join his research group, for
introducing me to new fields of science, and for sharing many valuable ideas concerning
this work;

my colleagues of the statistical physics group for the cooperative atmosphere;

Ines Katzorke and Jorg-Uwe Tessmer for their advice in computational matters;

Marita Dérrwand, Birgit Nader, and Marlies Path for their organizational support;

the members of th8&onderforschungsbereich 586omplex Nonlinear Processes), in par-
ticular the main organizers Prof. Dr. Werner Ebeling, Prof. Dr. Jirgen Kurths, Prof. Dr. Lutz
Schimansky-Geier, and Prof. Dr. Eckehard Schdll, for establishing a stimulating scientific
environment in Berlin and Potsdam;

Dr. Antonio Politi for inviting me to Firenze for two rewarding stays;

Rudiger Zillmer for the perfect cooperation during the first half of my PhD work as well as

Francesco Ginelli, Prof. Dr. Peter Grassberger, Prof. Dr. Roberto Livi, Dr. Antonio Politi,
and Dr. Alessandro Torcini for the many fruitful discussions during the second half;

Dr. Markus Abel, Dr. Bernd Blasius, Dr. Massimo Cencini, Miguel A. de la Casa,
Prof. Dr. Fritz Haake, Dr. Wolfram Just, Dr. Ulrich Parlitz, Dr. Oleksandr Popovych,
Prof. Dr. N. Sri Namachchivaya, Dmitri Topaj, Dr. Hong-Liu Yang, and many others for
enlightening discussions;

Prof. Dr. Roberto Livi, Prof. Dr. Arkady Pikovsky, and Prof. Dr. Lutz Schimansky-Geier for
acting as referees of this thesis;

Prof. Dr. Peter Grassberger, Bernd Sitte, Anke Spotter, and Rudiger Zillmer for their critical
reading of parts of the manuscript;

the Institute for Scientific Interchang@a Torino, theMax-Planck-Institut fur Physik kom-
plexer Systemia Dresden, and thentrum flr interdisziplinare Forschurig Bielefeld for
promoting cooperations with other scientists during well organized workshops;

the Deutsche Forschungsgemeinschaftproviding my salary (project SFB 555);
my parents Haide and Klaus Ahlers for their invaluable support throughout my studies;
and Anke Spéotter for her patience and for making life colourful.

99



	Title
	Abstract
	Contents
	1 Introduction
	2 Nonlinear Dynamics and Stochastic Models
	2.1 Dynamical Systems
	2.1.1 Differential Equations and Maps
	2.1.2 Lyapunov Exponents
	2.1.3 Example: Skew Bernoulli and Skew Tent Maps

	2.2 Spatially Extended Dynamical Systems
	2.3 Synchronization Phenomena
	2.3.1 Coupled Dynamical Systems
	2.3.2 Example: Coupled Skew Tent Maps and Lorenz Equations

	2.4 Stochastic Modelling of Chaotic Fluctuations
	2.4.1 Zero-Dimensional Systems
	2.4.2 Spatially Extended Systems


	3 Scaling of Lyapunov Exponents
	3.1 Coupling Sensitivity of Chaos
	3.1.1 The Effect
	3.1.2 Previous Theoretical Results

	3.2 Analytical Approach
	3.2.1 Stochastic Model
	3.2.2 Fokker-Planck Treatment
	3.2.3 The Second Lyapunov Exponent
	3.2.4 Generalized Lyapunov Exponents
	3.2.5 Asymmetrical Coupling

	3.3 Small Noise Expansion
	3.4 Numerical Simulations
	3.4.1 Discrete Maps
	3.4.2 Delay Differential Equations

	3.5 Random Walk Picture
	3.6 Summary and Perspectives

	4 Avoided Crossing of Lyapunov Exponents
	4.1 Lyapunov Exponents and Energy Levels
	4.1.1 Numerical Evidence for Avoided Crossing
	4.1.2 Energy Levels in Quantum Systems
	4.1.3 Distribution of Lyapunov Exponent Spacings
	4.1.4 Relation to Random Matrix Theory

	4.2 Theoretical Approach
	4.2.1 Hyperbolic Approximation of Coupling Sensitivity
	4.2.2 Distribution Functions for Special Cases

	4.3 Summary and Perspectives

	5 Synchronization of Extended Systems
	5.1 General Framework
	5.1.1 Coupled Spatially Extended Systems
	5.1.2 Stochastic Model
	5.1.3 Critical Exponents and Universality Classes
	5.1.4 Previous Results

	5.2 Two Types of Synchronization Transition
	5.2.1 Continuous and Discontinuous Maps
	5.2.2 Spatiotemporal Dynamics

	5.3 Numerical Results for Coupled Map Lattices
	5.3.1 Continuous Maps
	5.3.2 Discontinuous Maps

	5.4 Numerical Results for Discrete Growth Models
	5.4.1 Single Step Model with Lower Wall
	5.4.2 Single Step Model with Attractive Lower Wall

	5.5 Summary and Perspectives

	6 Conclusion
	6.1 Discussion of Main Results
	6.2 Open Questions and Perspectives

	A Appendix
	A.1 Numerical Calculation of Lyapunov Exponents
	A.1.1 Discrete Maps
	A.1.2 Differential Equations
	A.1.3 Spatially Extended Systems
	A.1.4 Generalized Lyapunov Exponents

	A.2 Stochastic Differential Equations
	A.2.1 Langevin Equation
	A.2.2 Fokker-Planck Equation
	A.2.3 Furutsu-Novikov Relation


	Notation
	References
	Acknowledgements

