# Biogranat: An Extensible Framework for the Visualization and Analysis of Gene Regulatory Networks

### Volker Ahlers, Frauke Sprengel, and student team

Fachhochschule Hannover (Germany) University of Applied Sciences and Arts Faculty IV, Dept. of Computer Science

#### Thomas Schlitt and Benjamin Lehne

King's College London (UK) School of Medicine, Dept. of Medical and Molecular Genetics

Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers - 2008-06-04





Fakultät IV - Wirtschaft und Informatik

### **FHH Student Team**

### Master project in winter semester 2007/08

Ingo Bente, Hendrik Kammeyer, Andreas Mendig, Mike Steinmetz, Jörg Vieweg, Björn Zimmer

#### Bachelor theses in 2007 and 2008

Bastian Hellmann, Stefan Kirstein, Michael Klaas, Alexander Schulz

## Gene Regulatory Networks

Gene regulatory networks (GRNs) are used in bioinformatics to model interaction between genes and transcription factors (proteins).



Weighted directed graph: Weights represent strength of gene activation or repression.

Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04





Fakultät IV – Wirtschaft und Informatik

### Gene Regulatory Networks

GRNs tend to be large, but have a specific structure: hub nodes with large number of outgoing edges.



## Analysis of Gene Regulatory Networks

Main aim of GRN analysis:

Finding "important" genes and understanding their function.

Subnetworks are of interest, e.g., red core set and next neighbors.



Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04

◆□ ト ◆□ ト ◆ □ ト



Fakultät IV – Wirtschaft und Informatik

## Analysis of Gene Regulatory Networks

Example: Finding functionally related genes.



### Analysis of Gene Regulatory Networks

#### Other things of interest for GRN analysis:

- Connectivity: strongly or weekly connected components.
- Clustering of nodes and edges.
- Statistics, e.g., distribution of node degrees (number of incoming and outgoing edges).
- Mutant networks: change of graph properties after removing "important" nodes or edges.
- Randomization: change of graph properties after randomly changing nodes or edges.

Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04





Fakultät IV - Wirtschaft und Informatik

# **Graph Drawing**

Aesthetic criteria of graph drawing may contradict each other:

- Crossing minimization.
- Bend minimization.
- Area minimization.
- Angle maximization.
- Length minimization.
- Symmetry preservation.
- Clustering.

### **Graph Drawing**

Classic approach: force-directed layout.

- Define energy function  $U(\mathbf{r})$  of node positions  $\{\mathbf{r}\}$ , e.g., based on a spring model with optimal node distance  $d_0$ .
- Start with a random layout (or better, a sophisticated guess).
- Compute forces  $F(r) = -\nabla U(r)$  acting on nodes.
- Minimize energy using simulated annealing.

Fruchterman-Reingold model (with nodes/vertices V, edges E),

$$U = \sum_{\{u,v\} \in E} \frac{1}{3d_0} \| \mathbf{r}(u) - \mathbf{r}(v) \|^3 - \sum_{\{u,v\} \in V^2} d_0^2 \ln \| \mathbf{r}(u) - \mathbf{r}(v) \|.$$

- Attractive forces:  $\| \boldsymbol{F}_{\text{att}} \| \propto \frac{\| \boldsymbol{r}(u) \boldsymbol{r}(v) \|^2}{d_0}$ .
- Repulsive forces:  $\| \boldsymbol{F}_{\text{rep}} \| \propto \frac{d_0^2}{\| \boldsymbol{r}(u) \boldsymbol{r}(v) \|}$ .

Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04





Fakultät IV - Wirtschaft und Informatik

## Requirements

Requirements for a GRN analysis tool:

- Network visualization, using graph drawing methods, generating "nice" and usable graph layouts.
- Network analysis, using fundamental graph algorithms (e.g., connected components, shortest paths).
- Extensibility by new algorithms implemented as plugins, preferably in Java.
- Possibility to use existing plugins within new plugins.
- Platform-independent open-source software.
- Command logging/scripting functionality, batch execution.

## **Existing Solutions**

Existing software tools and libraries (selection):

- Tools: Cytoscape, Pajek, BioLayout Express 3D.
- Matlab toolboxes: Bioinformatics, SimBiology.
- Graph libraries: LEDA, Graphviz/Grappa, JUNG, yFiles.

#### Miscellaneous drawbacks:

- Exclusive focus on graph drawing, missing extensibility.
- Proprietary software.
- Non-open-source and/or platform-specific software.
- "Strange" programming languages like Python or C++.

Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04





Fakultät IV - Wirtschaft und Informatik

## System Architecture: OSGi

OSGi (formerly *Open Services Gateway initiative*) provides the core plugin architecture of Biogranat.

- Open standard, developed since 1999 by OSGi Alliance.
- Implementations: Apache Felix, Eclipse Equinox, many others.
- Dynamic, component-based service platform for Java.
- Service-oriented architecture on local machine.
- OSGi framework manages lifecycle of bundles (components).
  - Bundles can be installed, updated, and uninstalled at runtime.
  - Bundle dependencies are resolved.

## System Architecture and Data Model

### System architecture

- Every system component is implemented as an OSGi bundle, including GUI, OpenGL renderer, and graph model.
- Every bundle provides one or more services,
   e.g., graph, node, and edge services, connected component service.
- User interface and implementation of a bundle are separated.

#### Data model

- Graph model: nodes, edges, selections, meta information (e.g., analysis results).
- Graph layout model: node and edge positions, colors, etc.

Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04

◆□ → ◆□ → かへで

**◆□ ▶ ◆□ ▶ か**900



Fakultät IV – Wirtschaft und Informatik



Biogranat: Visualization and Analysis of Gene Regulatory Networks

Volker Ahlers - 2008-06-04





Fakultät IV - Wirtschaft und Informatik

### **Example: Accessing Services**

### **Example: Obtaining Graph Information**

```
ArrayList<Graph> graphs = (ArrayList<Graph>)
    activeGraphService.getAll();
String message = "Graphs: " + graphs.size() + "\n";
for (Graph graph : graphs) {
    ArrayList<Node> nodes = (ArrayList<Node>)
        nodeService.getByGraph(graph);
    ArrayList<Edge> edges = (ArrayList<Edge>)
        edgeService.getByGraph(graph);
    message += "- Graph " + graph.getId() + " -\n"
        + "Nodes: " + nodes.size() + "\n";
}
JOptionPane.showMessageDialog(null, message);
```

Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04





Fakultät IV – Wirtschaft und Informatik

### **Features**

Overview of user features of Biogranat:

- Different graph layouts using JUNG library
   (Java Universal Network/Graph Framework), including circle,
   Fruchterman-Reingold (FR), and Kamada-Kawai (KK) layouts.
- Command logging using Java Scripting Framework (Java 6 javax.script).
- Configurable 3D OpenGL renderer JOGL (Java OpenGL Bindings).
- Import and export of graphs in ASCII and XML-based GraphML formats.
- Fundamental graph algorithms, e.g., connected components, reverse topological sort.

# Demonstration: Circle Layout



Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04

◆□ → ◆酉 → かく(^)



Fakultät IV – Wirtschaft und Informatik

## Demonstration: Fruchterman-Reingold (FR) Layout



## Demonstration: Large Graph (3197 nodes)



Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04





Fakultät IV – Wirtschaft und Informatik

## **Project Organization**

Bilateral meetings take place at Hannover and London.

 DAAD/British Council travel grant for 2007–2009 (PPP/ARC, Programm des projektbezogenen Personenaustauschs/Academic Research Collaboration).

Most work has been done within student projects.

- Bachelor thesis in summer semester 2007.
- Master project in winter semester 2007/08, OSGi architecture.

Drawbacks of student projects:

- Limited documentation and long-term support.
- Missing continuity.

## **Ongoing Work**

#### Master and PhD theses at London

Analysis algorithms for bioinformatics research,
 e.g., studying effects of network randomization.

#### Bachelor and Master theses at Hannover

- Vector graphic (SVG) export for 2D projections of 3D layouts.
- Specialized graph and tree layouts for gene regulatory networks.
- Wrappers for further graph libraries, e.g., Graphviz.
- Computing 3D graph layouts on the graphics processing unit (GPGPU approach).

Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04





Fakultät IV - Wirtschaft und Informatik

### Conclusion

Key features of Biogranat graph analysis tool:

- Extensible plugin architecture based on Java 6 and OSGi.
- 2D and 3D graph layouts using JUNG library and OpenGL renderer.
- Command logging using Java Scripting Framework.

#### Next tasks:

- Stabilizing the graph model kernel.
- Implementing algorithms for analyzing gene regulatory networks.
- Adding wrappers for further graph libraries.
- Adding interfaces to bioinformatics tools.

### Literature I

- Battista, G. di, P. Eades, R. Tamassia, and I. G. Tollis: Graph Drawing.
  - Prentice-Hall, Upper Saddle River, NJ, 1999.
- Jünger, M. and P. Mutzel (eds.): Graph Drawing Software. Springer, Berlin, 2004.
- Kaufmann, M. and D. Wagner (eds.): *Drawing Graphs*. Springer, Berlin, 2001.
- Klaas, M.: Graph Drawing: Entwicklung einer Software zur Visualisierung großer Graphen für biomedizinische Anwendungen.
  - B. Sc. thesis, Fachhochschule Hannover, 2007.

Biogranat: Visualization and Analysis of Gene Regulatory Networks Volker Ahlers – 2008-06-04





Fakultät IV - Wirtschaft und Informatik

### Literature II

- Rung, J., T. Schlitt, A. Brazma, K. Freivalds, and J. Vilo: Building and analysing genome-wide gene disruption networks.
  Bioinformatics, 18:S202–S210, 2002.
- Schlitt, T.: Towards Reverse Engineering of Gene Regulatory Networks.
  - Ph. D. thesis, University of Cambridge, 2003.
- Schlitt, T. and A. Brazma: Modelling in molecular biology: describing transcription regulatory networks at different scales. Phil. Trans. R. Soc. B, 361:483–494, 2006.
- JUNG graph library.
  http://jung.sourceforge.net/.
- OSGi service platform.
  http://www.osgi.org/.