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Scaling of Lyapunov exponents of coupled chaotic systems

Rüdiger Zillmer, Volker Ahlers, and Arkady Pikovsky
Department of Physics, University of Potsdam, Postfach 601553, D-14415 Potsdam, Germany

~Received 20 May 1999!

We develop a statistical theory of the coupling sensitivity of chaos. The effect was first described by Daido
@Prog. Theor. Phys.72, 853 ~1984!#; it appears as a logarithmic singularity in the Lyapunov exponent in
coupled chaotic systems at very small couplings. Using a continuous-time stochastic model for the coupled
systems we derive a scaling relation for the largest Lyapunov exponent. The singularity is shown to depend on
the coupling and the systems’ mismatch. Generalizations to the cases of asymmetrical coupling and three
interacting oscillators are considered, too. The analytical results are confirmed by numerical simulations.

PACS number~s!: 05.45.Xt
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I. INTRODUCTION

The dynamics of coupled chaotic systems attracted la
interest recently. Many interesting phenomena, in particu
different kinds of synchronization, can already be obser
in the simplest cases of two interacting chaotic attract
@1–3#. While the synchronization occurs for couplings lar
enough to suppress a chaos-induced tendency to desyn
nization, an interesting anomality in the dynamics happ
for very small couplings already. This is the effect of co
pling sensitivity of chaos, first observed by Daido@4–7# ~see
also@8,9#!: the dependence of the largest Lyapunov expon
on the coupling parameter« has a singularity;1/u ln «u for
small couplings«→0. The largest Lyapunov exponent thu
increases when weak coupling is introduced. This counte
tuitive effect has been described as a coupling-induced in
bility @9,10#.

The largest Lyapunov exponent measures the growth
of infinitesimal perturbations to chaotic trajectories a
serves as one of the most important characteristics of cha
motion, in numerics it is a standard tool for proving th
existence of chaos. Moreover, many physically relev
properties of chaos, such as the correlation time, entro
and synchronization threshold, depend on the larg
Lyapunov exponent. Therefore, the coupling sensitivity
not only of theoretical interest.

In this paper we study this effect in detail. We apply
analytical approach based on the modeling of the pertu
tion dynamics in coupled systems with a set of linear s
chastic equations~recently such an approach has been
plied to coupled map lattices@10#, see Sec. II H for details!.
For this set we get an analytical expression for the larg
Lyapunov exponent, valid for arbitrary coupling and sy
tems’ parameter mismatch. This allows us to show that
logarithmic singularity disappears if the interacting syste
have different exponents. We also obtain analytic expr
sions for generalized Lyapunov exponents. The theoret
predictions~Sec. II! are illustrated with numerical calcula
tions of coupled maps and interacting high-dimensio
continuous-time systems~Sec. III!. Apart from the analytical
treatment, we present in Sec. II D simple arguments expl
ing the singularity form with the help of elementary rando
walk dynamics.

A theoretical investigation based on modeling the fluct
PRE 611063-651X/2000/61~1!/332~10!/$15.00
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tions of Lyapunov exponents by random noise has alre
been undertaken by Daido@7#. In contrast to our approach,
started from discrete-time equations and was limited to
case of coupled identical one-dimensional maps.

II. ANALYTICAL APPROACH

A. Stochastic continuous-time model

In this section we formulate and investigate a stocha
continuous-time model for coupled chaotic systems. Fi
we neglect the high dimensionality of the interacting chao
systems and describe linear perturbations in each sys
with a scalar variable. In other words, we are following t
perturbation corresponding to the largest Lyapunov expon
only. Second, we model the fluctuations of the growth r
with a stochastic multiplicative term in the equations of m
tion. This approach has been succesfully applied in studie
different statistical properties of chaos@3,11#. Summarizing,
we propose the two-dimensional system of Langevin eq
tions

du1

dt
5@x1~ t !1L1#u11«~u22u1!, ~1!

du2

dt
5@x2~ t !1L2#u21«~u12u2! ~2!

as a continuous-time model for the linearized equations
coupled chaotic systems. The following three groups of
rameters describe three important ingredients of the dyn
ics.

~i! Lyapunov exponentsof uncoupled systems are de
scribed by the constantsL1,2.

~ii ! Fluctuations of local growth ratesare modeled with
the termsx1,2(t) which are random processes with ze
mean values. In order to be able to apply the powerful the
of the Fokker-Planck equation@12#, we assume, furthermore
these processes to be independent, Gaussian, andd corre-
lated

^x i&50, ^x i~ t !x j~ t8!&52s i
2d i j d~ t2t8!.

The parameterss1,2
2 describe the fluctuations of local expa

sion rates in the chaotic systems. The quantitiess1,2
2 can be
332 ©2000 The American Physical Society
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PRE 61 333SCALING OF LYAPUNOV EXPONENTS OF COUPLED . . .
set in direct correspondence to the uncoupled chaotic
tems, if one calculates the distribution of local~finite-time!
Lyapunov exponents@13#. Such a distribution has th
asymptotic~for large time intervalsT) form

Prob~lT!;e2Tf(lT),

with a scaling functionf having its minimum at the true
Lyapunov exponentL. For the stochastic model~1! and~2!
the local Lyapunov exponents are finite-time averages of
Gaussiand correlated process, so that their distribution
also Gaussian,

Prob~lT!;e2T(lT2L)2(2s)22
.

This means that we in fact use the parabolic approxima
of the functionf and get the parameters2 from this func-
tion:

s2252f9~L!.

~iii ! Coupling is described by the last terms on the righ
hand-side; it is proportional to the coupling constant«. For a
while a symmetrical coupling is assumed, the case of as
metrical coupling is considered in Sec. II F below.

Note that in this formulation we assume the statisti
properties of the underlying chaotic motion to be indep
dent of the coupling: the parametersL1,2 and the statistica
properties of the fluctuationsx1,2 are « independent. This
assumption is supported by the theory@14#, where the invari-
ant measure for weakly coupled systems is constructed u
perturbation methods, so that the measure has no singu
ties in dependence on«. Thus the theory below is valid a
soon as we can neglect« dependence of the statistical pro
erties of chaos compared to singular« dependence of the
largest Lyapounov exponent.

B. The Fokker-Planck equation and the maximal
Lyapunov exponent

Before writing the Fokker-Planck equation for the st
chastic system~1! and ~2!, we perform a transformation to
new variables. First we note that for large times and posi
coupling« both variablesu1,2 have the same sign. Indeed,
is easy to see that the regionsu1 ,u2.0 andu1 ,u2,0 are
absorbing ones because foru150 we haveu̇15«u2 and for
u250 we haveu̇25«u1. Thus eventually one observes th
state withu1u2.0 independently of initial conditions. So th
transformation

v15 ln~u1 /u2!, v25 ln~u1u2!

can be performed, leading to the equations

dv1

dt
5j122«sinh~v1!1L12L2 , ~3!

dv2

dt
5j212«cosh~v1!1L11L222«, ~4!

where j15x12x2 and j25x11x2. One can see that th
dynamics ofv1 is v2 independent, thus, although the noi
s-

e

n

-

l
-

ng
ri-

e

forcing termsj1,2 are no more statistically independent, w
can write the Fokker-Planck equation for the probability de
sity r(v1 ,t) @12#:

ṙ5F2« cosh~v1!12« sinh~v1!
]

]v1
2~L12L2!

]

]v1

12s2
]2

]v1
2Gr, ~5!

wheres25(s1
21s2

2)/2.
The stationary solution of Eq.~5! is given by

rstat~v1!5Cexp~ lv12«s22 coshv1!, ~6!

where l 5 (L12L2/2s2), with the normalization constan
C.

Based on the solution~6! we now calculate the larges
Lyapunov exponentlmax ~below we omit the index, denoting
the largest exponent for simplicity asl), defined by

l5 lim
t→`

1

t

1

2
^ ln~u1

21u2
2!&.

The normu1
21u2

2 can be expressed in terms ofv1 andv2 as

ln~u1
21u2

2!5v21 ln~2 coshv1!.

Since one is interested in the large-time limit, the station
distribution of v1 may be used. Becaus
^ ln(2 coshv1)&rstat(v1) is finite and time independent, the on
contribution to the largest Lyapunov exponent comes fr
v2. Thus Eq.~4! gives the equation forl,

l5
1

2
^v̇2&5«^ coshv1&1

1

2
~L11L222«!. ~7!

The averaging with the stationary distributionrstat(v1) yields

^ coshv1&5
K12u l u~«/s2!1K11u l u~«/s2!

2K u l u~«/s2!
,

where Kl are modified Bessel functions~Macdonald func-
tions! @15#. Substituting this in Eq.~7! we obtain a final
analytical formula for the largest Lyapunov exponent. W
write it in a scaling form,

l2
1

2
~L11L222«!

s2
5

«

s2

K12u l u~«/s2!1K11u l u~«/s2!

2K u l u~«/s2!
.

~8!

This form demonstrates that the essential parameters o
problem are the coupling parameter and the Lyapunov ex
nents’ mismatch normalized to the fluctuation of the exp
nents:«/s2 and l 5(L12L2)/(2s2), correspondingly.

Simplified expressions can be obtained in the followi
limiting cases.
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(a) Small coupling, equal Lyapunov exponents.Accord-
ing to Eq.~6!, if the Lyapunov exponents of two interactin
systems are equal,L15L25L, then the parameterl van-
ishes and we get~cf. @10#!

l5«
K1~«/s2!

K0~«/s2!
1L2«.

For small coupling«/s2 the leading term in« is singular, as
it follows from the expansions ofK1 andK0 @15#:

l2L'
s2

u ln~«/s2!u
. ~9!

This formula corresponds to Daido’s singular dependenc
the Lyapunov exponent on the coupling parameter@4–6#. It
is valid in all cases, when identical chaotic systems
coupled symmetrically, provided that the Lyapunov exp
nents in these systems fluctuate (s2.0). Moreover, even for
different systems having however equal Lyapunov expone
~but not necessarily equal fluctuations of the exponents! we
get the same singularity as for identical systems. Daido
rived at a similar result in his analytical treatment of coup
one-dimensional maps, cf. Eq.~19! of Ref. @7#.

(b) Small coupling, different Lyapunov exponents.The
expansion~9! remains valid for small values of mismatchu l u,
if ( «/s2) u l u is close to 1. For larger mismatch, when

S «

s2D u l u

!1,

the largest Lyapunov exponent is

l'2s2u l u
G~12u l u!
G~11u l u! S «

2s2D 2u l u

1
1

2
~ uL12L2u1L11L2!.

~10!

The singularity is now of the power-law type, with the pow
depending on the systems’ mismatch. Note also that th
the correction to the largest of the Lyapunov exponents
uncoupled systemsL1,2.

(c) Large coupling.For «/s2@1 the expansion of Eq.~8!
gives

l'
s2

2
2

~113l 2!s4

8«
1

1

2
~L11L2!. ~11!

C. Generalized Lyapunov exponents

The generalized Lyapunov exponents characterize fin
time fluctuations of the exponential growth rate. For our l
ear model~1! and ~2! they are defined as@13#

L~q!5 lim
t→`

1

t
ln ^~u1

21u2
2!q/2&. ~12!

For simplicity of presentation we assume below that the
teracting systems are identical and therefore will omit
index at the parameterss2 andL.
of
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It is straightforward to obtain the generalized Lyapun
exponents for integerq. For q51 we need equations for th
mean valueŝ u1,2& which can easily be obtained by dire
averaging of the system~1! and ~2! using the Furutsu-
Novikov relation@16,17#

d

dt
^u1&5~L1s22«!^u1&1«^u2&, ~13!

d

dt
^u2&5~L1s22«!^u2&1«^u1&. ~14!

Thus the averageŝu1,2& grow exponentially and the gene
alized Lyapunov exponent is

L~1!5L1s2. ~15!

Similarly, we can write the three-dimensional system of l
ear equations for the moments^u1

2&,^u2
2&,^u1u2& and deter-

mine L(2) as the largest eigenvalue of this system

L~2!52L13s222«1As414«2. ~16!

This method works for all integer moments, but forq.2 we
have to look for roots of polynomials of order 4 and highe
so the analytical expressions are hardly available. Also,
do not have a method for calculation of the generalized
ponents for noninteger indices.

Having expressions forL(1) andL(2), we can find an
approximate expression for the usual Lyapunov expon
~cf. @18#!. Indeed, this exponent is determined by the beh
ior of L(q) nearq50,

l5L8~0!

@this formula follows directly from Eq.~12!, see also@13##.
As L(q) is a convex function andL(0)50, knowing two
pointsL(1) andL(2) we can approximate it with a parabo

L~q!5aq1bq2,

with the parameters

a52L~1!2
L~2!

2
, b52L~1!1

L~2!

2
.

Thus we get the approximation for the usual Lyapunov
ponent

l̃5a5L1
s2

2
1«2As4

4
1«2.

For «@s2 this gives

l̃'
s2

2
2

s4

8«
1L,

which coincides with Eq.~11!. We see that the paraboli
approximation for the generalized exponent spectrumL(q)
is valid for large couplings and small fluctuations of th
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FIG. 1. A sketch of the perturbation dynamic
in coupled systems. The curly line shows the ra
dom walk not influenced by coupling; straight a
rows demonstrate the effect of coupling.
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finite-time exponents. Another limiting case, when the fo
of the generalized exponent spectrum is exactly paraboli
that of zero coupling

L~q!5Lq1s2q2.

For small coupling, where the logarithmic singularity of th
usual exponent~9! is essential, the parabolic approximatio
does not work.

D. A qualitative picture

Here we give qualitative arguments supporting the m
singularity formula~9!. Let us consider the symmetric cas
and small couplings~moreover, for simplicity of presentatio
we assumeL50). For small«, the coupling in the system
~1! and ~2! influences the dynamics only if the differenc
betweenu1 andu2 is large. E.g., ifu2;u1 /«@u1, then the
coupling term in the first equation~1! is of the same order a
other terms and it contributes to the growth of the varia
u1. At the same time the influence ofu1 on u2 remains
small. Thus, the coupling ‘‘switches on’’ only rarely, bu
leads to effective equalization of the variables where
smallest one is adjusted to the largest one. We illustrate
process in Fig. 1~a!.

To make these arguments quantitative, let us represen
same qualitative picture in the plane of logarithmic variab
ln u1, ln u2 @see Fig. 1~b!#. Here we have a random walk i
two dimensions, and this walk is restricted to the st
u ln u12ln u2u,2ln « ~the connection between the dynami
in the plane of logarithmic variables and the random w
has already been pointed out in Ref.@7#!. The walk has rather
strange properties of reflection at the boundaries: it spring
the diagonal lnu15ln u2, always in the direction of growth o
ln u1 and lnu2. Due to these reflections a constant drift aris
whose velocity is easy to estimate. Indeed, for an unbia
random walk starting at the center of the strip the mean t
to reach the boundary is (ln«)2/s2 @19#, and this is a charac
teristic time between reflections. Each reflection make
contribution of order ofu ln «u to the mean drift. So for the
mean drift velocity we gets2/u ln «u in accordance with Eq
~9!.

E. The second Lyapunov exponent

From the Fokker-Planck equation approach we have
tained the largest Lyapunov exponent. The second expo
can be found as follows. For the stochastic system~1! and~2!
the mean divergence of the phase volume is
is

n

e

e
is

he
s

k

to

,
d
e

a

b-
nt

K d

dt
ln VL 5K ]u̇1

]u1
1

]u̇2

]u2
L 5L11L222«,

and this quantity is just the sum of the Lyapunov exponen
Thus

l252l11L11L222«, ~17!

and we get forl2 the same singularity as for the large
exponent, only with another sign.

F. Asymmetrical coupling

The more general case of asymmetrical coupling can
described by the following set of Langevin equations:

du1

dt
5@x1~ t !1L1#u11«1~u22u1!, ~18!

du2

dt
5@x2~ t !1L2#u21«2~u12u2!. ~19!

By virtue of the scaling transformation

ũ15A«2u1 , ũ25A«1u2 , ~20!

the problem can be reduced to the symmetric case,

u̇̃15~x11L12«11A«1«2!ũ11A«1«2~ ũ22ũ1!,

u̇̃25~x21L22«21A«1«2!ũ21A«1«2~ ũ12ũ2!.

Thus, we can use the expression~8! for the largest Lyapunov
exponent, leading to

l12
1

2
~L11L22«12«2!

s2

5
A«1«2

s2

K12u l u~A«1«2/s2!1K11u l u~A«1«2/s2!

2K u l u~A«1«2/s2!
. ~21!

Here the effective mismatch and the effective coupling
now given by

l 5
1

2s2
@~L12«1!2~L22«2!#, «5A«1«2.
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In the case of unidirectional coupling the ansatz~20! is no
more valid, but in this situation the Lyapunov exponents c
easily be found directly. If, e.g.,«150, then the Lyapunov
exponents areL1 , L22«2. There is no singularity for uni-
directional coupling.

The results for asymmetrical coupling can straightf
wardly be understood in the framework of the qualitati
picture of Sec. II D. Indeed, the important quantity is t
width of the strip in Fig. 1~b!, and this is2(ln «11ln «2). In
the limiting case of unidirectional coupling the width ten
to infinity, the random walk never hits the boundary, a
there are no essential corrections to the uncoupled expon

G. Three coupled chaotic systems

Models with many coupled identical chaotic systems ha
attracted large attention recently~e.g., @20,21#!. As a first
step in this direction, we show here that the system of th
symmetrically coupled oscillators has the same logarith
singularity in the Lyapunov exponent as the system of t
oscillators. The stochastic model has the following form:

du1

dt
5@x1~ t !1L#u11«~u21u322u1!,

du2

dt
5@x2~ t !1L#u21«~u11u322u2!, ~22!

du3

dt
5@x3~ t !1L#u31«~u11u222u3!,

with uncorrelated noisy termsx i . In the variables

v15 ln
u1

u3
, v25 ln

u2

u3
, v35 ln~u1u2u3!

the system~22! reduces to

dv1

dt
5x12x322« sinh~v1!2«ev21«ev22v1,

dv2

dt
5x22x322« sinh~v2!2«ev11«ev12v2, ~23!

dv3

dt
5x11x21x313~L22«!12« cosh~v12v2!

12« cosh~v1!12« cosh~v2!.

As the equations forv1 ,v2 constitute a closed system, w
can write the Fokker-Planck equation for the probability de
sity r(v1 ,v2). In the limit «→0 the stationary solution o
this equation can be looked for in the ‘‘quasipotential’’~see,
e.g., @22#! form r5Cexp@(«/s2)f(v1,v2)#, which in the first
order in« gives ~see@23# for details!

r5CexpF2
«

s2
@cosh~v12v2!1cosh~v1!1cosh~v2!#G .

~24!
n

-

ts.

e

e
ic
o

-

The largest Lyapunov exponent can, analogous to Eq.~7!, be
represented as

l5L22«1
2«

3
^cosh~v12v2!1cosh~v1!1cosh~v2!&.

The averaging requires a nontrivial integral, which can
estimated in the limit«s22→0 ~see@23#! to give the final
formula

l2L;
4

3

s2

u ln~«/s2!u
. ~25!

The singularity in the system of three coupled chaotic os
lators is thus of the same type as for two oscillators, cf. E
~9!.

H. Coupled map lattices

In a parallel work, an approach similar to ours has be
used to derive an analytic expression for the scaling of
largest Lyapunov exponent in coupled map lattices@10#. For
small coupling, coupled identical maps, and positive mu
pliers, the authors arrive at an expression

l2L'
s2

u ln~g/s2!u
,

whereg5«/(122«). This result is similar to ours for the
case of two coupled systems, Eq.~9!, with the difference that
« is replaced byg as the scaling parameter.

The authors of Ref.@10# were also able to derive an ex
pression for the case of multipliers with fluctuating signs,

l2L'
3

2

s2

u ln~g/s!u
.

Instead of the variances2, the standard deviations appears
in the argument of the logarithm.

III. NUMERICAL RESULTS

We now compare the results obtained for the system
continuous-time Langevin equations with numerical calcu
tions for both continuous- and discrete-time determinis
systems. For the calculation of Lyapunov exponents we i
ate the original as well as a set of linearized equations,
reorthonormalize the difference vectors periodically using
modified Gram-Schmidt algorithm~see @24,25# and refer-
ences therein!.

For the first examples~Sec. III A–III C! we iterate a sys-
tem of two diffusively coupled one-dimensional maps,

x1~n11!5 f 1„x1~n!…1«@ f 2~x2~n!!2 f 1„x1~n!…#,
~26!

x2~n11!5 f 2„x2~n!…1«@ f 1„x1~n!…2 f 2„x2~n!…#,
~27!

wheref 1(x) and f 2(x) are maps specified below. The linea
ized equations read
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FIG. 2. Coupled skewed Bernoulli maps, Eq.~30!. ~a! The Lyapunov exponentsl12L1 and l22L2 vs « for x051/3 ~solid lines!,
x051/4 ~dotted lines!, x051/5 ~dashed lines!, andx051/6 ~dash-dotted lines!. ~b! The same graphs in scaled coordinates. The long-das
lines show the analytical results (l12L1)/s251/u ln(«/s2)u and (l22L2)/s2521/u ln(«/s2)u, see Eqs.~9! and ~17!.
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w1~n11!5~12«! f 18„x1~n!…w1~n!1« f 28„x2~n!…w2~n!,
~28!

w2~n11!5~12«! f 28„x2~n!…w2~n!1« f 18„x1~n!…w1~n!.
~29!

The Lyapunov exponents of the uncoupled maps areL1,2

5^ ln uf1,28 u&. In the simplest examples considered below
variances can be calculated ass1,2

2 5^(ln uf1,28 u2L1,2)
2&/2. To

have a good correspondence to the theory, we use only
notonous mappings~i.e., with a constant sign off 8) below,
so that the fluctuations of the local expansion rate are
only source of irregularity of perturbations’ dynamics. A
other source of irregularity could be irregular changes of
sign of the derivativef 8 ~as for the logistic and the ten
maps!. Such an irregularity is not covered by our continuou
time approach, but also leads to the logarithmic singula
of type ~9!, see@10#.

A. Skewed Bernoulli maps

We first choosef 1(x)5 f 2(x)5 f (x) to be identical maps
where f (x) is the skewed Bernoulli map defined as

f ~x!5H x/x0 if x<x0

~x2x0!/~12x0! if x.x0 ,
~30!

with xP@0,1# and 0,x0,1. For the uncoupled map, th
Lyapunov exponent and the magnitude of fluctuations
given by

L52x0 ln x02~12x0!ln~12x0! ~31!

and

s25
1

2
x0~12x0!S ln

x0

12x0
D 2

, ~32!

respectively. Forx051/2 we obtain the ordinary Bernoul
map. In this case, there are no fluctuations of the local m
tipliers (s250), and no coupling sensitivity of the
Lyapunov exponents is observed.

Figure 2~a! shows the differencesl1,22L1,2 vs « for
e

o-

e

e

-
y

e

l-

maps with different values ofx0Þ1/2. From Fig. 2~b! it can
be seen that different curves collapse onto single lines
both exponents when plotted in the rescaled form accord
to Eq. ~8!, namely as (l12L1)/s2 vs 1/u ln(«/s2)u. The re-
sulting lines are in very good agreement with the lead
term of the theoretical prediction (l12L1)/s2

51/u ln(«/s2)u, which is also shown.
No such good accordance between theory and nume

experiment is found in the case of generalized Lyapun
exponents. In Figs. 3~a! and 3~b! the results forL(1) and
L(2) are shown for small values of«. Also shown are the
theoretical predictions from Eqs.~15! and~16!, respectively.
The rough correspondence is completely lost for larger v
ues of «, although the considerations in Sec. II C are n
restricted to small«.

Much better results are achieved if the derivativesf i8 in
the linearized equations~28! and ~29! are replaced by inde
pendent and identically distributed Gaussian stochastic v
ablesj i ( i 51,2). Then the system of equations reads

w1~n11!5~12«!ej1(n)w1~n!1«ej2(n)w2~n!, ~33!

w2~n11!5~12«!ej2(n)w2~n!1«ej1(n)w1~n!, ~34!

with ^j i(n)&5L and ^(j i(n)2L)(j j (m)2L)&
52s2d i j dnm( i , j 51,2). In Figs. 4~a! and 4~b! the results for
L(1) and L(2), respectively, are shown together with th
analytical curves. The values ofL ands2 were calculated by
means of Eqs.~31! and~32! with the values ofx0 used above
for the skewed Bernoulli map.

An explanation for the discrepancy between the determ
istic and stochastic results is that the distribution off 8(xi) is
changed with increasing«, while the distribution of the sto-
chastic variablesj i remains constant. Furthermore,f 8(x1)
and f 8(x2) are not statistically independent for larger valu
of «. These effects have no observable influence in the c
of usual Lyapunov exponents~Fig. 2! because of the singu
larity. In the case of generalized Lyapunov exponents, ho
ever, the nonsingular scaling functions are much more s
sitive against changes in the distribution of multipliers.
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FIG. 3. Generalized Lyapunov exponents for the skewed Bernoulli maps.~a! Rescaled exponent@L(1)2L#/s2 vs « for the same values
of x0 as in Fig. 2. The long-dashed line shows the analytical result@L(1)2L#/s251, see Eq.~15!. ~b! Rescaled exponent@L(2)
22L#/s2 vs «/s2 for the same values ofx0 as in Fig. 2. The long-dashed line shows the analytical result@L(2)22L#/s25322«/s2

1A114(«/s2)2, see Eq.~16!.
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B. Different maps

One main result of the analytical approach is that the s
gularity does only depend on the averages25(s1

21s2
2)/2 of

the fluctuations of local expansion rates and on the mism
l 5(L12L2)/(2s2) of the Lyapunov exponents of the un
coupled systems. Although no singularity occurs ifs250,
we can expect to observe coupling sensitivity in the case
system with fluctuations (s1

2.0) coupled to one withou
fluctuations (s2

250), given that the mismatchl is suffi-
ciently small.

In order to check this prediction, we again numerica
iterate the system of Eqs.~26!–~29!, now choosing two dif-
ferent maps. The first map is again the skewed Bernoulli m
@ f 1(x)5 f (x), see Eq.~30!#, while the second map is define
as

f 2~x!5eL1x, ~mod 1!, ~35!

whereL1 is the Lyapunov exponent of the skewed Bernou
map f (x) @see Eq.~31!#. With this choice we have the pa
rameterss1

2.0, s2
250, andl 50.
-

ch

a

p

i

In Fig. 5 the result is compared with the previous res
for two coupled identical skewed Bernoulli maps (x051/4 in
either case!. As expected, the logarithmic singularity is ob
served in both cases, although the deviationul i2L i u is
smaller if s2

250. When rescaled with the averages2, how-
ever, the curves collapse onto single lines for the first a
second Lyapunov exponents, as can be seen in Fig. 5~b!.

C. Systems with anomalous fluctuations
of Lyapunov exponents

Daido found out that for coupled logistic mapsf (x)
54x(12x) the Lyapunov exponents exhibit power-law in
stead of logarithmic singular behavior due to anomalo
fluctuations of the finite-time Lyapunov exponents@7#. Here
we report a similar observation in the case of coupled stra
nonchaotic attractors.

Fluctuations of finite-time Lyapunov exponents is a typ
cal feature of chaotic systems, but in some nonchaotic s
tems the Lyapunov exponents fluctuate as well. To this c
belong strange nonchaotic attractors~SNAs! that have a
FIG. 4. Rescaled generalized Lyapunov exponents in stochastic maps.~a! The exponent@L(1)2L#/s2 vs « for L ands2 corresponding
to the values ofx0 used for Fig. 2. The long-dashed line shows the analytical result as in Fig. 3~a!. ~b! The exponent@L(2)22L#/s2 vs «/s2

for L ands2 corresponding to the values ofx0 used for Fig. 2. The long-dashed line shows the analytical result as in Fig. 3~b!.
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FIG. 5. Different maps.~a! l12L1 andl22L2 vs « for two coupled skewed Bernoulli maps withx051/4 ~solid lines! as well as one
skewed Bernoulli map withx051/4 coupled with the different map~35! ~dotted lines!. ~b! (l12L1)/s2 and (l22L2)/s2 vs 1/u ln(«/s2)u for
the same examples as in Fig. 5~a!. The long-dashed lines show the analytical results as in Fig. 2~b!.
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negative maximal Lyapunov exponent but a complex frac
structure in the phase space~see@26# and references there!.
The fluctuations of finite-time Lyapunov exponents a
present in SNAs@26#, but they are much more correlate
than in chaotic systems. We demonstrate below that
leads to weaker singularity in the Lyapunov exponent dep
dence on coupling.

We studied numerically two coupled quasiperiodica
forced maps having strange nonchaotic attractors, taking

f ~x!52.5 tanh~x!usin~vn1f!u, ~36!

wherev5(A521)/2 is the frequency of quasiperiodic driv
ing. The model~36! has been studied rigorously in@27,28#.
The results are presented in Fig. 6. The dependence o
Lyapunov exponents on the coupling has a singularity,
this singularity contrary to Eq.~9! is a power law, with a
power close to 1/2. A detailed theory needs correct acco
of nontrivial correlation properties of the SNA and is now
progress.
l
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D. High-dimensional continuous-time systems

Daido observed the effect of coupling sensitivity of cha
not only for coupled one-dimensional maps, but also for tw
dimensional discrete-time maps@6#. Here we give numerica
evidence that the logarithmic singularity is also observed
infinite-dimensional and continuous-time systems. As an
ample we study a system of two coupled one-dimensio
delay differential equations. A delay differential equation h
an infinite number of Lyapunov exponents, and for lar
delays usually a finite number of exponents is positive. T
system we study reads

ẋ1~ t !5 f „x1~ t !,x1~ t2t!…1«@x2~ t !2x1~ t !#, ~37!

ẋ2~ t !5 f „x2~ t !,x2~ t2t!…1«@x1~ t !2x2~ t !#, ~38!

where

f ~x~ t !,x~ t2t!!52x~ t !1a sinx~ t2t!
FIG. 6. The Lyapunov exponents in coupled strange nonchaotic attractors in natural coordinates~a! and in a log-log representation~b!.
The dashed line in~b! has slope 0.5.
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FIG. 7. The Lyapunov exponents in the coupled Ikeda equations, in natural~a! and scaled~b! coordinates. Open circle and open squa
the splitting of the positive Lyapunov exponent; open triangle and open rhombohedral: the splitting of the zero exponent; cross and
splitting of the closest to zero negative exponent.
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corresponds to the Ikeda equation, describing an optical r
nator system@29#. The parameter values were chosen to
a53.0 andt55.0. We integrated the coupled Ikeda equ
tions, together with the linearized equations, using
fourth-order Runge-Kutta routine. The results are presen
in Figs. 7~a! and 7~b!. The uncoupled Ikeda system has o
positive and one zero~due to invariance to time shifts!
Lyapunov exponent, all other exponents are negative. In
coupled system the two former zero exponents~the third and
the fourth! are not affected by the coupling sensitivity: on
exponent remains exactly zero, changes of the another
are hardly seen for small couplings. We attribute this to
fact that the zero Lyapunov exponent in an autonomous
tem does not fluctuate. The other Lyapunov exponents~the
positive one and the first negative one!, however, show the
logarithmic singularity.

E. Three coupled chaotic maps

For three weakly coupled chaotic systems, the lead
terms in the expressions for the maximum and minim
o-
e
-
e
d

e

ne
e
s-

g

Lyapunov exponents were shown to have the same loga
mic singularities as in the case of two coupled systems,
though with a different factor~see Sec. II G!. The singularity
is observed in numerical simulations for three coupled id
tical skewed Bernoulli maps@see Fig. 8~a!#. The factor of
4/3, however, is obviously not correct, although a rou
agreement between theoretical and numerical results ca
seen in Fig. 8~b!. A reason for the disagreement could be t
neglect of terms of order«2 when finding the stationary
probability distribution, Eq.~24!.

IV. CONCLUSION

In this paper we used the Langevin approach to obt
statistical properties of the Lyapunov exponents for sm
coupling. For the simplest system of two coupled stocha
equations it is possible to obtain an analytical expression
the largest Lyapunov exponent, for different values of p
rameters~coupling, Lyapunov exponents of uncoupled sy
tems, fluctuations of Lyapunov exponents!. The logarithmic
singularity, first discovered by Daido, is shown to exist ev
FIG. 8. Three coupled skewed Bernoulli maps.~a! The exponentsl i2L i( i 51, . . . ,3) vs« for x051/3 ~solid lines!, x051/4 ~dotted
lines!, x051/5 ~dashed lines!, and x051/6 ~dash-dotted lines!. ~b! The exponents (l i2L i)/s

2( i 51, . . . ,3) vs 1/u ln(«/s2)u for the same
values ofx0 as in ~a!. The long-dashed lines show the analytical results~25!.
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if rather different systems are coupled, provided th
Lyapunov exponents coincide. We also give a qualitat
explanation of the effect, based on the interpretation of
perturbations’ dynamics as coupled random walks. The c
pling ;« restricts the two-dimensional walk to a strip with
width ; log«, with rather unusual ‘‘reflection conditions’
on the strip borders. As a result the random walk~and, cor-
respondingly, the Lyapunov exponent! gets a bias
;(log«)21. It is not clear, if such an effect can be observ
in the context of other random-walk-like phenomena.

We have also presented some generalizations where
do not have strict analytical results. For three coupled s
tems we were only able to obtain leading terms in the sm
coupling approximation; they are of the same inverse lo
rithm type as for two systems. Numerical simulations o
.

or
r
e
e
u-

we
s-
ll
-

system with weaker stochastic properties~strange nonchaotic
attractor! reveal, however, a power-law singularity, possib
due to the existence of long correlations in the dynamics
perturbations.

Recent results presented in Ref.@10# for coupled map
lattices, including the case of fluctuating multiplier sign
support the assumption that the logarithmic singularity i
very general phenomenon of coupled chaotic systems.
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