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We study two coupled spatially extended dynamical systems which exhibit space-time chaos. The
transition to the synchronized state is treated as a nonequilibrium phase transition, where the average
synchronization error is the order parameter. The transition in one-dimensional systems is found to be
generically in the universality class of the Kardar-Parisi-Zhang equation with a growth-limiting term
(“bounded KPZ”). For systems with very strong nonlinearities in the local dynamics, however, the
transition is found to be in the universality class of directed percolation.
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The synchronization of chaotic systems has been a very
active field in nonlinear dynamics since its discovery [1].
It has been observed in lasers, electronic circuits, and
chemical reactions [2]. In recent years, the synchroniza-
tion of spatially extended chaotic systems has attracted
particular interest [3]. Experimentally, the most promis-
ing systems to observe this phenomenon are optical ones.
Indeed, broad-area semiconductor lasers [4] demonstrate
space-time chaos (STC). Furthermore, the dynamics of
semiconductor lasers with time-delayed optical feedback
[5] show many aspects of STC [6]. All of these sys-
tems can be optically coupled via mutual light injection
(cf. [7]). In another context, symmetry breaking of STC
in anisotropic liquid crystals with different diffusion con-
stants for different spatial directions [8] can be also inter-
preted as the synchronization transition in STC.

From the point of view of a general statistical theory,
the synchronization of STC is an example of a nonequi-
librium phase transition; accordingly its critical properties
attracted particular interest [9,10]. As a generic model
of this transition a multiplicative noise partial differential
equation (MNPDE) has been proposed [11]. The following
studies of this MNPDE [12–15] have revealed nontrivial
critical exponents, allowing one to speak of a particular
universality class.

In this Letter we characterize the synchronization tran-
sition by its critical exponents and relate it to known
universality classes, making use of the above mentioned
MNPDE. The results are in agreement with recent obser-
vations in the context of the synchronization of stochas-
tically driven coupled map lattices [10], which indicates
the generality of the synchronization transition. It is worth
noting that, although the systems we consider below are
purely deterministic, they demonstrate the same statisti-
cal properties as stochastic ones; it is another example
of validity of statistical description of deterministic STC
(cf. [16]).

We first restrict our numerical simulations to systems
which are discrete in space (one spatial dimension) and
time, i.e., coupled map lattices (CMLs) (see, e.g., [17]).
CMLs are well suited for modeling STC, allowing one to
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perform extensive statistical numerical analysis. Our basic
model consists of two coupled CMLs,µ
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with the discrete Laplacian

Dy�x� � y�x 2 1� 2 2y�x� 1 y�x 1 1� . (2)

Here x � 1, 2, . . . , L and t � 0, 1, . . . are the discrete
space and time variables (with the system length L), u1,2
are the state variables, and the nonlinear function f�u�
describes the local dynamics. Periodic boundary condi-
tions, u1,2�x 1 L, t� � u1,2�x, t�, are used throughout.
There are two coupling parameters: ´ accounts for the
coupling inside of each CML and can be seen as a dif-
fusion constant, whereas g represents the strength of the
sitewise interaction between the two CMLs. We choose a
fixed value ´ � 1�3 for the diffusion constant, and vary
the coupling parameter g to study the synchronization
transition.

Complete synchronization of two CMLs is achieved
if the synchronization error w�x, t� � u1�x, t� 2 u2�x, t�
vanishes at all x for t ! `, which is equivalent to a van-
ishing spatial average �jw�x, t�j�x . In the unsynchronized
state, �jw�x, t�j�x . 0. The remaining part of this Letter is
devoted to a study of the dependence of the average abso-
lute synchronization error �jwj�, which is the natural order
parameter, on the coupling parameter g.

To illustrate that there are two different types of the
synchronization transition, we present first the results of
numerical simulations of the coupling (g) dependence of
the average absolute synchronization error �jwj�x,t, where
the time average is taken after saturation. Using the tent
map f�u� � 1 2 2ju 2 1�2j �0 # u # 1� in Eq. (1), we
obtain the synchronization transition shown in Fig. 1(a).
The same type of transition is observed for the logistic
map f�u� � 4u�1 2 u� �0 # u # 1� . We will argue be-
low that the transition for these systems belongs to the uni-
versality class of the Kardar-Parisi-Zhang (KPZ) equation
© 2002 The American Physical Society 254101-1
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FIG. 1. The synchronization transition for coupled CMLs con-
sisting of (a) tent and (b) Bernoulli maps, respectively (system
length L � 1024). The shown data are averages over 10 differ-
ent initial conditions and 5 3 104 iterations (after a transient of
5 3 104 iterations). Similar results are also observed for skew
maps, with the slopes of the linear parts being different: a21

and �1 2 a�21.

[18] with a saturation term [14]. We therefore denote it as
the “bounded KPZ transition” (BKPZ).

We observe, however, a different type of transition if we
employ the Bernoulli map f�u� � 2u (mod 1) in Eq. (1);
see Fig. 1(b). This transition is continuous like BKPZ, but
has a definitely different scaling exponent. Since it will
turn out below that the transition for the Bernoulli maps be-
longs to the universality class of directed percolation (DP,
see, e.g., Ref. [14]), we refer to it as the “DP transition.”

The crucial difference between systems showing each
of the two transition types is the presence or absence of
a strong nonlinearity (such as a discontinuity) in the lo-
cal map: the (skew) tent and logistic maps are continuous,
while the (skew) Bernoulli maps are discontinuous. The
same observations were recently reported for spatially ex-
tended systems which are not coupled to each other, but
driven by a common noise process [10]. The authors of
Ref. [10] attribute the DP transition to an instability with
respect to finite perturbations of linearly stable systems.

The different nature of the two transitions is visualized
in Fig. 2, which shows the spatiotemporal evolution of the
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FIG. 2. Spatiotemporal evolution of the synchronization error
of coupled CMLs (L � 1024) with coupling parameters g
slightly larger than the critical values gc: gray scale plot of
the absolute synchronization error jw�x, t�j (darker shades
correspond to larger values). (a) Tent CMLs, g � 0.181;
(b) Bernoulli CMLs, g � 0.291. The coupling is switched on
at t � 0 after some transient evolution of the uncoupled CMLs
(random initial conditions).
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absolute synchronization error jw�x, t�j for CMLs consist-
ing of (a) tent and (b) Bernoulli maps, respectively, for
values of g slightly larger than the critical gc.

We now turn our attention towards the temporal evo-
lution of a small perturbation w�x, t� of the synchronized
state u1�x, t� � u2�x, t�, which in the linear order obeys
the equation

w�x, t 1 1� � �1 2 2g� �1 1 ´D� � f 0���u1�x, t����w�x, t�� .
(3)

The exponential growth rate of the norm kwk is known as
the transverse Lyapunov exponent,

l� � lim
t!`

1
t

lnkw�t�k� ln�1 2 2g� 1 L , (4)

where L is the usual Lyapunov exponent of a single CML.
The synchronized state is linearly stable if l� , 0, i.e., if
2g . 2gc � 1 2 e2L (see [1]).

A numerical calculation of the Lyapunov exponent re-
veals that for CMLs consisting of continuous maps �jwj�x,t
vanishes exactly at the above defined critical value gc

[we obtained, e.g., for the tent and the logistic map gc �
0.1760 and gc � 0.1584 basing on (4), while direct mod-
elling gave 0.17605�5� and 0.1584�1�, correspondingly].
For CMLs consisting of discontinuous maps there exists
a range of g, for which �jwj�x,t . 0 although l� is defi-
nitely negative. In particular, for the Bernoulli map with
a � 1�2 and a � 1�3 the values of gc following from
(4) are 0.250 and 0.2430, while the transition occurs at
0.2875�1� and 0.2800�5�, correspondingly. In other words,
no synchronization is observed in this range of g although
the synchronized state is linearly stable. This behavior, the
instability with respect to finite perturbations of linearly
stable spatially extended systems with strong nonlinearities
in the local dynamics, is known for systems demonstrating
“stable chaos” [19]. In the following, we will demonstrate
that the transition observed for continuous local maps, at
which the transverse Lyapunov exponent changes sign, is
of the BKPZ type, while the transition mediated by insta-
bility to finite perturbations is of the DP type.

Next we report numerical findings of the scaling indices
of the BKPZ transition. The main indices d and b ap-
pear in the dependencies of the order parameter: �jwj�x �
t2d for g � gc and �jwj�x,t � �gc 2 g�b for gc * g.
First, for a CML consisting of L � 220 tent maps, we es-
timated the critical coupling parameter by two methods.
By extrapolating the values L�L� to L ! `, using the re-
lation [20,21] L�L� 2 L�`� � L21, we obtained gc �
0.176 14. A very close value gc � 0.176 15 6 0.000 05
was obtained by looking for the best power-law behavior
of �jwj�x�t� for different values of g; see Fig. 3(a). A scal-
ing analysis of this graph gives the exponent d � 1.26 6

0.03. Second, we studied the scaling behavior of the data
shown in Fig. 1(a) for a CML consisting of L � 1024 tent
maps. Using the critical value gc � 0.1760, we obtain
254101-2
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FIG. 3. Coupled tent CMLs: (a) Time dependence of the
space-averaged absolute synchronization error, �jwj�x�t�, for
coupling parameters g [ 	0.1761, 0.17615, 0.1762
 (upper to
lower solid lines, averaged over five initial conditions, L �
220); the dashed line has a slope 21.26, as obtained from a
scaling analysis. (b) Coupling dependence of �jwj�x,t (time
averaged after saturation) with gc � 0.1760 (L � 1024); the
dashed line has a slope 1.5.

b � 1.50 6 0.05; see Fig. 3(b). A better estimate of b,
however, is difficult due to the uncertainty in the knowl-
edge of gc.

The critical indices of the synchronization transition are
to be compared with those of the other models of the BKPZ
transition. We introduce first a multiplicative noise par-
tial differential equation with a cubic saturation term as a
model of the perturbation dynamics. The linear dynamics
of the perturbations [Eq. (3)] account for the exponential
growth with finite-time fluctuations of the growth rate as
well as spatial diffusion; see Refs. [11,20]. Adding the
nonlinear saturation term ensures that the synchronization
error w�x, t� remains bounded [14]. We thus obtain

≠w�x, t�
≠t

� �a 1 j�x, t� 2 pjw�x, t�j2�w�x, t�

1 ´
≠2w�x, t�

≠x2 . (5)

The control parameter a is connected with the transverse
Lyapunov exponent l�, which depends on g according to
Eq. (4); the critical point ac corresponds to the value gc

at which the transverse Lyapunov exponent crosses zero.
The Gaussian stochastic process j�x, t� has the properties

�j�x, t�� � 0 ,

�j�x, t�j�x 0, t0�� � 2s2d�x 2 x0�d�t 2 t0� .

By application of the Hopf-Cole transformation, h �
ln jwj, Eq. (5) can be transformed into [11]

≠h�x, t��≠t � a 1 j�x, t� 2 pe2h�x,t� 1 ´≠2h�x, t��≠x2

1 ´�≠h�x, t��≠x�2, (6)

which is the KPZ equation [18] with an additional
saturation term. In Eq. (6), synchronization corresponds
to an interface moving towards 2`, and the exponen-
tial saturation term prevents the interface from moving
254101-3
towards large positive values; thus the transition can be
termed as “bounded KPZ.” The negative average interface
velocity gives the transverse Lyapunov exponent l�.

The continuous phase transition in Eq. (5) that occurs
in dependence on a has been studied by numerical and
renormalization group methods [12,13,15]. However, the
scaling indices are not known with a very good accuracy,
in particular due to the difficulty of estimating ac. In the
literature, the values d � 1.10 6 0.05 and b � 1.70 6

0.05 [13] (as well as d � 1.10 6 0.12 and b � 1.50 6

0.15 [15]) have been reported for the multiplicative noise
equation (5). From a numerical simulation of Eq. (6) by
means of a discrete growth model with a limiting wall
where the critical value ac is known exactly, one obtains
d � 1.17 6 0.05 and b � 1.70 6 0.05 (details of this
analysis will be reported elsewhere [22]). The most prob-
able reason for the small discrepancy between these values
and our findings for the coupled CMLs (see above) is the
presence of spatiotemporal correlations in the chaotic dy-
namics. Another possible cause for the discrepancy may
be the difference in the updating in the CMLs and stochas-
tic models (parallel vs asynchronous); it is known that this
is crucial for the values of critical indices at other transi-
tions in STC [23].

For a CML consisting of Bernoulli maps, the scaling of
�jwj�x�t� at gc � 0.2875 agrees well with the value of the
critical exponent, d � 0.159, that is known for DP [24]
(data not shown here). Furthermore, the finite-size scaling
relation

�jwj�x�t� � L2b�n� f�t�Lz�

known for DP [23] is very well fulfilled by the coupled
Bernoulli CMLs; see Fig. 4. As we already mentioned
above, the transition for CMLs consisting of discontinuous
maps is not ruled by linear stability properties. Thus the
stochastic model (5), which is based on the linear perturba-
tion dynamics, does not apply to such systems. In Fig. 2(b)
it is obvious that for coupled Bernoulli CMLs there are
no desynchronization events in already synchronized re-
gions. Thus the synchronized state is absorbing (as was
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FIG. 4. Coupled Bernoulli CMLs: finite-size scaling at the
critical coupling parameter gc � 0.2875. �jwj�x�t� is plotted in
(a) unscaled and (b) scaled coordinates for system lengths L [
	32, 64, 128, 256,512, 1024
 (lower to upper lines). The DP val-
ues b�n� � 0.252 and z � 1.581 [24] are used in (b).
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already argued in Ref. [10], see also Ref. [9]). The exis-
tence of an absorbing state is a prerequisite of directed per-
colation [14].

We are of the opinion that the BKPZ transition is the
typical synchronization transition. The DP transition was
only observed for CMLs consisting of maps with strong
nonlinearities (see also Ref. [10]); it is not clear if it can
occur in oscillator lattices or PDEs. Since the stochas-
tic PDE model, Eq. (5), is not limited to discrete systems
(such as CMLs), one can expect to observe the BKPZ tran-
sition also for coupled chaotic PDEs. To check this we
have investigated numerically the synchronization transi-
tion in two coupled Kuramoto-Sivashinsky (KS) equations
(they describe waves on falling liquid films and instabili-
ties of combustion fronts; see [16] for details)

≠u1,2

≠t
1

≠2u1,2

≠x2 1
≠4u1,2

≠x4 1 u1
≠u1,2

≠x
� g�u2,1 2 u1,2� .

In a large spatial domain with periodic boundary condi-
tions a single KS equation demonstrates space-time chaos
with the largest Lyapunov exponent L � 0.0475. We
have studied scaling properties of the synchronization
error jju1�x, t� 2 u2�x, t�jj near the threshold gc � L in a
way shown in Fig. 3 above, and were able to estimate the
scaling exponents: d � 1.2 6 0.1, b � 1.5 6 0.1 (the
uncertainty is, of course, larger than for CMLs because
it is difficult to achieve for PDEs the same statistics).
These numbers are in agreement with those obtained for
CMLs, thus confirming that the synchronization transition
in coupled Kuramoto-Sivashinsky equation belongs to the
bounded KPZ class. Furthermore, the same transition
is found for unidirectionally coupled spatially extended
systems. The found generality of the transition suggests
that it can be also discovered in equations describing STC
in optical systems [4,5].

In conclusion, we have given numerical evidence that
the synchronization transition of coupled CMLs consist-
ing of continuous maps belongs to the universality class of
the bounded Kardar-Parisi-Zhang (BKPZ) equation. For
coupled CMLs consisting of maps with strong nonlineari-
ties (e.g., discontinuous maps), the synchronization transi-
tion belongs to the universality class of directed percolation
(DP). This can be understood from the observation that in
such systems the synchronized state can be unstable with
respect to finite perturbations, even if it is linearly stable.
Numerical results for coupled KS equations indicate that
the synchronization transition in coupled PDEs belongs to
the BKPZ universality class. Thus, we expect a strong spa-
tiotemporal intermittency to be generally observed at the
synchronization transition of STC. Quantitatively, its fea-
tures are described by scaling indices b, d.
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While there exist very accurate estimates of the critical
exponents of DP, definite values for the BKPZ transition
are still missing. A possible remedy is given by a discrete
KPZ growth model with a limiting wall, which allows very
efficient numerical simulations. Details of this approach
will be reported elsewhere [22].
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